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IDENTIFICATION OF NONLINEAR SYSTEMS WITH PERIODIC
EXTERNAL ACTIONS (Part I)

V. GORODETSKYI

Abstract. The problem of identifying nonlinear systems with periodic external ac-
tions is considered in the article. The number of such actions in the system is not
limited, and these actions can be either additive or multiplicative. We use a time se-
ries of observed system variables to calculate unknown equation coefficients. The
proven theorem allows us to separate the unknown coefficients of the system into
variables and constants. The proposed computational procedure allows us to avoid
possible errors caused by the discrete nature of observable time series. Identification
of zero coefficients is carried out in two ways, eliminating erroneous zeroing of the
terms of the equations. The method is illustrated with a numerical example of identi-
fying a chaotic system with periodic external actions.

Keywords: identification, ordinary differential equation, external action, periodic
coefficient, constant coefficient.

INTRODUCTION

Nonlinear systems with external actions occur in the study of many real objects
and processes. Such systems are widespread, for example, in biology [1-3], ecol-
ogy [4], epidemiology [5], mechanical engineering [6—8], and electrical engineer-
ing [9].

A significant amount of research is devoted to constructing models of non-
autonomous systems, including those that involve periodic external actions. In
[4], for example, non-autonomous models of the “predator-prey” type are studied
for almost periodic systems that are used in bioinformatics, social networks, and
wireless sensor networks. Study [6] is devoted to the analysis of the influence of
external periodic force on the behavior of the model of single-degree-of-freedom
vibro-impact system. In this work the conditions for the transition of the model
from the chaotic to the regular regime have been studied. In paper [7], a nonlinear
non-autonomous dynamic model of a quarter vehicle with nonlinear spring and
damping was studied. The influences of the damping coefficient, external action
amplitude and frequency on the dynamic responses were analyzed. It was estab-
lished that the system could have chaotic, quasi-periodic or periodic motion. A
study of a bio-reactor model with periodic nutrient forcing is presented in [10].
The paper [11] investigates the global behaviors of the logistic system with peri-
odic impulsive perturbations. The authors formulate condition under which the
system may have periodic solution. A wide class of non-autonomous models is
described and analyzed in [12]. An increasing interest in non-autonomous systems
was admitted in [13]. This survey introduces basic concepts and tools for non-
autonomous dynamical systems and their application to various biological mod-
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els. Investigation [14] is devoted to the analysis of various modes of the oscillator
with periodic external action.

Additionally, extensive research has been conducted to address one of the
specific instances of the inverse problem [15], which is the identification of non-
autonomous systems based on the observed variables. For example, neural net-
works were used in [16; 17] to solve this problem. The study [18] proposes a
method for constructing a nonlinear, non-autonomous model with a hyperbolic
linear part. The articles [19; 20] consider various approaches to identifying sys-
tems of differential equations with an additive external action. A similar problem
for systems of difference equations was solved in [21].

FORMULATION OF THE PROBLEM

In the works mentioned above, the problem of identifying a system with a known
model structure and additive external action is typically addressed. We are at-
tempting to solve a more general problem. Namely, we propose a method for
finding external actions, both additive and multiplicative, without limiting their
quantity. This task is complicated by the lack of information regarding which co-
efficients of the differential equation are constant and which are periodic (repre-
senting external actions). Also, the task can become more difficult when we study
systems with deterministic chaos. As is known [22], the behavior of such systems
essentially depends on the initial conditions.

Consider a system consisting of ordinary differential equations (ODEs) of
the form

5= e (0f,). W
=0

where i=1,...,n; x={x/(¢),...,x,(¢)}. We assume that the right-hand sides of

equation (1) satisfy the conditions for the existence and uniqueness of the solution
on a certain time interval when ¢ €[0;2,], ¢, > 0.

The coefficients in equation (1) can be of three types: c;()=const,
¢;j(1)=0, and ¢;(?) = p;(¢), where p;(¢) is a continuous periodic function with

a period T . This function represents an external action on the system. Each equa-
tion of the system can have many periodic coefficients that correspond to external
actions. Moreover, all periodic coefficients in each equation have the same pe-
riod. Generally speaking, the external actions of equation (1) are multiplicative.
If, for example, f,(x)=1, then the external action c¢;,(¢) becomes additive.

A method is proposed for solving the following problem. We assume that the
functions x;(¢), x;(¢), and f;(x) in equation (1) are known. It is necessary to
define the following:

1. Determine which coefficients of equation (1) are periodic, which are con-
stant, and which are zero. We assume that equation (1) has at least one coefficient
of each type. At the same time, the number of coefficients of each type is limited
only by the total number of coefficients in the equation, which is m +1.

2. Find the period of the functions p; ().
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3. Find the values of the constant coefficients.
4. Find the form of the functions p; (7).

METHOD
To solve this problem, we will use the following approach. Consider the case
when, in equation (1), ¢;(¢) = const Vj€0,...,m. Then, to find these coefficients,
we can use a system of m+1 linear algebraic equations (SLAE) compiled for
m+1 time points ¢,...,t,,:

X;(19) = cio fo (X(19)) + ¢t /1 (X(29)) + ...+ €4, £ (X(29)),

X (1) = ¢io fo(X(11)) + ¢y [y(X(11) + o+ iy [ (X(21)),

xi (tm) = CiOfO (X(tm )) + Cilﬂ (X(tm )) +..+ cimfm (X(tm ))
The SLAE (2) coefficients can be calculated using the well-known relation [23]:

2

C=A7"B, (3)
where
Cio Jo(x(#)) f1(x(%)) ... [, (X(2))) x; (29)
C= Cil A= Jo(x(#)) fi(x(8))) ... [, (x(8)))  B= x;(#)
Cim Jo(x(@,)) f1(x(2,,)) .. [ (X(2,,)) X (Zy,)

To calculate constant coefficients using formula (3), it is sufficiently to do
the following:

1. Select arbitrary moments of time ¢,,...,Z,, .

2. Form matrix A and vector B for these moments. We assume that matrix
A is not singular.

3. Use formula (3) to obtain vector C.

Note that, since in this case all the c¢;,...,c;,, coefficients are constant, it is

im
sufficiently to perform all the listed above operations for one set of #,...,Z,, .

If at least one of the required coefficients is a function of time ¢, (¢) = var, it

is necessary to find its values at each point in the time interval ¢ €[0;z,]. Using
the procedure described above for some arbitrary set of ¢,...,¢,,, we will obtain

ot m o

some value of coefficient c; (¢) . At the same time, it is not known to which point
in time from the interval [0;z,] this value corresponds. Thus, the function c;(#)

cannot be constructed. As will be shown below, to eliminate this uncertainty
when calculating periodic coefficients using formula (3), it is sufficiently to im-
pose some conditions on the moments of time for which matrix A and vector B
are formed.

Let the time moments for which the SLAE (2) is formed obey the relations:

t1=l‘0+‘c, t2=t0+2T,..., l‘m=t0+m’t; toZO, T>0, l‘mSl‘e (4)
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Theorem. Let equation (1) has constant coefficients and periodic coeffi-
cients with a period of 7 . Additionally, let the SLAE be formed in the form of
equation (2) for the time moments, subject to the conditions (4) and when t=T.
When solving the SLAE using relation (3), we obtain a vector C, which consists
of the values of the periodic coefficients of equation (1) at time ¢, as well as the
values of the constant coefficients of this equation.

Proof. Let us first assume that in equation (1), one of the coefficients, for
example, c;q(¢), is periodic with a period 7 , while the remaining coefficients are

constant. Then the SLAE (2) will take the following form:
x;(tg) = cio(t9) fo (x(29)) + ¢;1 1 (X(£0)) + ..+ i [ (X(1p)),

X () = ¢ (1) fo (X(11)) + i [y (X(#)) + oo+ €y [ (X(8)), 5)

xi (tm) =Cjo (tm )fO (X(tm )) + cilfl (X(tm )) +...+ cimfm (X(tm ))
Let us form a matrix A and vector B to solve system (5). To do this, we
choose the moments of time according to the condition stated in the theorem,

which is condition (4). If at the same time t=7, then, since the function is peri-
odic with a period of T, we get

cio(tg) =cip(t)) =..=cio(ty) (6)

where
tl =t0 +T, tz =t0 +2T,..., tm =t0 +mT.

That is, in the system (5), the periodic coefficient c;,(¢) becomes constant.
Therefore, applying formula (3) to solve SLAE (5) is correct. The resulting vector
of coefficients of the system (5) will include the values of the constant coefficients
of equation (1) and the value of the periodic coefficient at time moments (6).

According to the conditions of the problem, all periodic coefficients of equa-
tion (1) have the same period. Therefore, the above reasoning is valid if equation
(1) has more than one periodic coefficient. That is, when forming the SLAE of the
form (2) and considering relations (4) at t=1T7, all periodic coefficients of equa-
tion (1) will have constant values that correspond to the time moment #;. Then,
by solving the SLAE (2), we can determine these constant values of the periodic
coefficients of equation (1) as well as the values of the constant coefficients of
equation (1). This completes the proof.

Corollary. To separate the desired coefficients into constant and periodic
ones, it is sufficient to form two systems of the form (2) for two values of #;: ¢y,

and ty3, while considering conditions (4). If t=T, 5 #¢, , and |t01 —t02| kT
(k=1.2,...), then when solving these two SLAEs, we obtain the same values for

the constant coefficients in equation (1).

This Corollary was used to construct the identification algorithm described
in the next section. It is also necessary to note an important special case that may
arise with an arbitrary choice of #;, and ¢y, values in the proposed algorithm and
which may lead to incorrectness of results. This situation will be considered in the
Special case section.
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NUMERICAL RESULTS

On the basis of proven Theorem and its Corollary, an algorithm was developed
that can be divided into two stages. At the beginning, we can address the first
three points of the formulated problem. In the second stage, the form of the func-
tions p;;(7) is determined.

To illustrate the method, we used system (7), which was built based on the
well-known Rossler system [24]:

X] ==Xy — X3,
X2 =X — dX2, (7)
X3 = 30 (1) + €33 (1) X3 + €36 (1) %13,

where

d =015, c3()=0.5+0.4sin (%j e33(t) =20, 36 (1) = 5+ 2.55m(%—§j.

As we can see, the third equation of the system has two external actions: an
additive one c;3;(¢) and a multiplicative one c;4(¢). The period of external

actions was taken to be 7 =2.11s. The system was solved over an interval of
100 s with a step size of Az =0.01s. Fig. 1 shows the time series of the variables
in the system (7), and Fig. 2 displays its phase trajectories.

The object of study is the third equation of the system (7). We will identify it

based on the general structure of the form (8), which includes a second-degree
polynomial on the right-hand side:

. 2
X3 =30 (1) + 31 (D)x) + 3 ()% + e33(0) x5 + 34 (D)X] +c35() X1 x5 +

2 2
+C36()x1X3 + 37 () X5 + 35 (1) X X5 + €39 (1) X5 - (8)
6
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Fig. 1. Time series of system (7) variables
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Fig. 2. Phase trajectories of system (7)

The solution to the formulated problem can be significantly simplified if it is
possible to first estimate the period of external actions on the system. This possi-
bility exists, for example, with resonance [25]. In this case, the period of external
action can be estimated based on the period of oscillation of the observed vari-
ables. It is easy to show that for a chaotic system (7) such an approach will not
lead to proper results. Considering that the external actions of this system are in-
cluded in its third equation, then, first of all, these actions can affect the shape of
the function x;(¢). As a result, this function can become periodic. But, as follows
from Fig. 1, this function has no periodicity. Also, the period of external actions
cannot be estimated based on an analysis of the shape of the functions x;(¢) and

X,(t). For example, Fig. 3 shows the time

series x,(t) and v;4(¢), where the latter is the

!l lr' ”“ H1 variable component of the external action

l || | || ”) l“ C36(1) , V36 =2.5sin (2mt/T —w/2). 1t is obvious

. 09 that the quasi-period of a function x,(#) does

not coincide with the period of vs;4(f) and is

V36 not a multiple. Therefore, we cannot

10 2'0 3-0 20 preliminarily estimate the period of external

; actions and thus simplify the solution of the

. . ... problem. Moreover, due to the lack of
Fig. 3. Comparison of oscillation : . .

4 . information about the existence of external
periods of functions vy (1) and x, () periodic action, we may erroneously assume
that the model has only constant coefficients. Such an initial assumption may lead
to the construction of an inadequate model.

In general, the main steps of the first stage of the proposed algorithm in rela-
tion to equation (8) are as follows:

1. We set t,,, form the SLAE (2), and solve it by setting the values of 1
within a certain range of (t,;t,) which presumably includes the desired value of

T . Thus, we obtain the values of all coefficients c¢;; ().

X2, V36
= J.= -‘9 2.2 J.=
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2. Repeat step 1 for ¢, # ¢y, .

3. For each coefficient ¢3;(¢), we find a value t at which

3; =,/(c§j—c§j)2 —> min, )

where ¢} ; and 3 ,; represent the values of the coefficient c;;(#) obtained for #y
and ¢, , respectively.

The calculations were carried out for 7, =0.15s, f¢y, =0.4s, 1, =1.0s,
1, =11.55. The calculation results are shown in Table 1. The first line of Table 1
shows the t values for which relation (9) is satisfied. Since the calculations in-
volve discrete time series instead of continuous functions x;(z), there is a possi-

bility of errors when calculating (9). Therefore, in order to obtain more complete
information for analyzing the results, lines 2—5 of Table 1 show the t values for

which the & i value is closest to zero. As the line number increases, the & i value

also increases.

Table 1. The first line shows the T values at which & j takes on the least values

N The T values calculated for the coefficients of equation (8) at 8 ; — min
30 | () | e3n(0) | e33(0) | c3a(0) | e35(0) | cap(t) | c3g(0) | esg(t) | c30(t)
1| 2.08 | 844 | 2.11 844 | 8.44 2.11 8.78 2.11 844 | 2.11
21 10.10 | 2.11 8.44 | 10.05 | 2.11 844 | 4.16 844 | 2.11 8.44
3| 526 | 422 | 1055 | 10.55 | 4.22 | 1055 | 6.67 | 422 | 10.55 | 1.31
41 10.03 | 10.55 | 422 | 2.11 | 10.55 | 2.05 | 4.06 | 10.55 | 6.33 | 4.22
51 334 | 938 | 4.71 4.22 8.10 | 4.22 5.44 837 | 4.22 542

Based on the data presented in Table 1, the following conclusions can be drawn.

1. In the columns corresponding to the coefficients c3,(2), c3,(¢), c33(¢),
c34(1), c35(t), c37(t), c35(t), c39(t), the predominant values are t=2.11s or
multiples: 4.22s, 6.33s, 8.44s and 10.55s (these values are highlighted in bold
in the table). Based on the corollary of the theorem, it can be argued that these
coefficients are constant. Such regularity is not observed for the coefficients
c30(?) and cy4(¢), suggesting that these coefficients are variable.

2. In addition, we can infer from the table that the search value for the period
of external action is 7 =2.11s, and consequently, 4.225=2T, 6.33s=3T,
8.44s5=4T, 10.555=5T.

The values of the coefficients c% ; and 032 ;» which satisfy relation (9) and

were used to fill the first line of Table 1, are indicated in Table 2. An examination
of these values suggests that equation (8) has only one non-zero constant coeffi-
cient, c33. The final conclusion can be reached after further analysis.

Table 2. Calculated values of the constant coefficients of equation (8)

Coefficients
lo

€3 €32 C33 C34 C35 C37 €38 €39
fo; = 0.155(3.417%107|5.070%107|-20.019|2.399%10°| 6.222*%10 | 3.682*107 |-9.514*10%9.320%107
tyr =0.4s |-2.017%107-5.214%107-20.022|-1.450%107°2.168 *107|2.094*107|3.027*10* |4.599% 10>
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Moreover, it will be possible to answer the fourth point of the formulated
problem, which is to determine the form of the functions c;((¢) and c34(¢) . The

second part of the algorithm is dedicated to solving this problem. With the already
known value of T, the SLAE (2) is formed for #, varying within a certain range.

By solving the SLAE at all points within this range, we can evaluate the values of
all coefficients (both constant and variable) at these specific time intervals. The
time series of certain coefficients, obtained from the calculation for
10 s <1, <30 s, are shown in Fig. 4. In the graphs, the calculated values of the
coefficients are indicated by c5y,c5;,... The graphs in this figure have singulari-
ties, i.e., some points where the values of ¢; differ significantly from neighboring

points. This occurs because the matrix A formed for calculating the coefficients

of Cij» in this case, has a determinant detA — 0.
© (¢ c51(0)
C30(1) 31
6- 2,5,
5 2,04
41 1,51
3] ]
1,04
2] ]
0,54
11 ]
0 I/\/ 0_0_‘ ——— __1__,____._J(r_«l_ I~
-1 : - : . r t -0.5 : ; : . . t
10 15 20 25 30 10 15 20 25 30
a b
c 5 )
c33(1) 36
30
20 -
04 20-
-20+ 15-
-40 10
-60 :
D_
-80 E
-100+ y -104
10 15 20 25 30 10 15 20 25 30 '
c d

Fig. 4. Time series of ¢ (f), ¢;,(f), &(f), ¢4(¢) obtained as a result of the calculation

We also note that, for example, in Fig. 4, b, ¢5; =0 at points where the sin-

gularity does not occur. Here, graphs for some of the coefficients from Table 2
are not shown since all of them, except for c35(¢), have a similar form to Fig. 4,

b. That is, the values of these coefficients are close to zero. This fact confirms the
preliminary assessment based on the data in Table 2, namely:

C3] =C3p =C34 =C35 =C37 = C33 =C39 = 0.
Re-identification of equation (8) using non-zero coefficients c;y(¢), c33(%),

c36(¢) allowed us to obtain the time series, as shown in Fig. 5, a, b, c. Fig. 5, d
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shows the original and identified time series of the c3,(¢) coefficient on the inter-
val 21.2s <t <22.2s.This figure illustrates the proximity of these series, except
for points with a singularity.

(1) c53(0)
-6
1,0 -8
l‘ A -10
0.8 ] '\ 121
14
0,64 -161
-181
0.4 -201
221
0.21 24
0,0+— , , . . t 261 : : ; t
10 15 20 25 30 10 15 20 25 30
a b
c36(0) 30 (1)
91 0,01 C30(0)
8,
0,81 \
7,
64 0,71
5 €30 (1)
0,61
4
3 0,51
21 : ‘ ‘ — ¢t 04+ . : : : .
10 15 20 25 30 212 214 216 218 220 222
c d

Fig. 5. Time series of calculated coefficients: a— ¢ (t); b— c,(f); c— ¢ (¢); d — initial
¢,,(?) and calculated ¢ (f) time series on the interval 21.25 <7 <2225
Fig. 6 shows the time series of errors: Acyy =59 —C39, Acsyz =353 —C33,

Acsyg = 36 — 34, Which allows us to visually estimate the accuracy of identifica-
tion.

SPECIAL CASE

As noted in the Method section, for a certain set of calculation parameters the re-
sult may be incorrect. This situation is possible when a periodic function ¢ (#)

has the period 7' and the following conditions are met

T
¢ (to)) =¢; (tga), t01—t02|=2, (a=23,.). (10)

Let us illustrate the features of the algorithm application in this case with an
example. Let the system (7) have the following parameters:

d=0.15, c3o(t)=l+sin(%), e33(6) =20, exe()=5, T=2s. (11)
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0,2 14
oy | | ” | |\ 13
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0,61— : : : : : : : : :
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10 15 20 25 30
Fig. 6. Time series of errors

The system was solved over an interval of 100 s with a step size of
At =0.01s. Identification was carried out according to the algorithm described

above for ¢, =1s, ty, =2s. The input action graph is shown in Fig. 7. As fol-
lows from (11) and illustrated by the graph, the following relationships hold:

T
c30(fo1) =30 (t2) > [tor —t02| :EZIS )

It can be noted that these

2,01 relationships correspond to conditions
(10). As a result of applying the
1,51 algorithm, the data presented in Table 3

were obtained.

$1.0 An analysis of these data similar to
the analysis of Table 1 may lead us to

0,5 incorrect conclusions.
0.0/ 1. Since all columns of Table 3
’ ‘ . . . contain values t=1,2,..., all the coeffi-

0 2 4 ; 6 8 10 cients are constant.
. . . L 2. We can also mistakenly assume
Fig. 7. Time series of external action in (11) that T =15, and the values 2s.3s,....10s
are multiples.

Obviously, both of these conclusions are incorrect. But this result can be eas-
ily corrected by changing the calculation parameters of the algorithm to violate

the conditions (10). In this case, the value f;,, =2.0ls was used instead of

tp, =2s. That is, the moment of time ¢y, was shifted by 1 step compared to the
previous case. The calculation results are given in Table 4.
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Table 3. The same as in Table 1 for system (7) with parameters (11)

The t values calculated for the coefficients of equation (8) at & ; — min
Ne :

c30(2) | €31(1) | €32(2) | €33(2) | €34(2) | c35(0) | €36(2) | c37(2) | 33(0) | €39(2)

1.00 | 9.00 | 4.00 | 7.00 | 3.00 | 10.00 | 6.07 | 3.00 | 4.00 | 6.00

7.00 | 2.00 | 9.00 | 1.00 | 2.00 | 4.00 | 6.00 | 8.00 | 2.00 | 5.72

9.00 | 10.00 | 8.00 | 6.00 | 10.00 | 8.00 | 2.00 | 4.00 | 9.00 | 5.64

2.00 | 3.00 | 10.00 | 9.00 1.00 | 5.00 | 5.00 | 2.00 | 8.00 | 599

DN B W=

3.00 | 1.00 | 2.00 | 5.00 | 5.00 | 9.00 | 9.00 | 7.00 | 3.42 | 10.00

Table 4. The same as in Table 3 with 7y, =2.01s

The t values calculated for the coefficients of equation (8) at 8_ i min

c30(0) | ¢31(1) | c3p(1) | c33(1) | €34(0) | c35(8) | c36(2) | €37(2) | c35(2) | c39(0)
9.07 | 10.00 | 4.00 6.00 2.00 10.00 | 2.00 8.00 4.00 6.00

249 | 2.00 | 10.00 | 2.00 | 10.00 | 4.00 | 6.00 & 4.00 | 7.65 | 6.10
947 | 451 | 800 | 840 | 750 | 8.00 | 8.00 | 2.00 | 2.00 | 8.53
572 | 484 | 2.00 | 897 | 8.00 | 2.00 | 4.00 | 10.00 | 8.00 | 5.67
058 | 800 | 6.00 | 800 | 400 | 2.28 | 10.00 | 6.00 | 10.00 | 10.00

DN |W[IN|—

The data in Table 4 already allow us to draw the correct conclusions.

1. In the identified equation, the coefficient c3, is periodic, the other coeffi-
cients are constant.

2. The function c;y(¢) has a period 7 =2s and the values 4s, 65, 8s,10s
are multiples.

It should be noted that in a real study, repeating the identification with
changed ¢, is not mandatory to obtain the correct result. It is sufficient to apply
the last stage of the algorithm based on the data in Table 3, namely, to try to ob-
tain the form of the input action with already known possible values of 7 . For
this purpose, the SLAE (2) is formed taking into account the conditions (6) for ¢,
varying within a certain range. By solving the SLAE at all points within this
range, we can evaluate the values of ¢;; coefficients for all these points. Thus, we
obtain the function ¢; (7).

On the contrary, when conditions (10) are met, the condition
c;j(tg) =c¢;(t) =...=¢;(t,) is met only for specific #,. If we choose T'=1s,
then, for example, at 7, =0s we will get according to (6) t; =1s. As it is seen
from Fig. 7, c37(0s)=c3(ls). However, at #, =0.5s we will get ¢, =1.5s and
c30(0.55) # c30(1.5s) . Thus, we cannot construct a function ¢;(7) for all ¢,
within a given time interval.

This feature becomes apparent when we perform the second stage of the al-
gorithm. Time series of all coefficients at 7 =1s were calculated. Two of them

are shown in Fig. 8, a and 8, b. For comparison, Fig. 8, ¢ and 8, d show the graphs
obtained for the same functions, but at 7 =2s . The choice of the correct 7' value

when considering these four graphs is obvious.
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Fig. 8 Time series of calculated coefficients ¢, () and ¢, (f): aand b for T = 15 ; cand
dforT7 =2s

CONCLUSIONS

The proven theorem and its corollary make it possible to solve the inverse prob-
lem with many unknowns. Such unknowns can be the number and values of con-
stant ODE coefficients, the number, period and forms of external actions. The
latter can be both additive and multiplicative. The number of external actions in
each equation of the system is unlimited. The only restriction is that all the exter-
nal actions in each equation must have the same period. The method allows us to
detect unknown periodic actions that cannot be identified based on the form of
observed variables.

To solve the formulated problem, it is not necessary to know in advance
which coefficients in the ODE system’s equations are variables, constants, or ze-
ros. To use proposed method for solving formulated problem it is sufficiently to
have time series of observed variables.
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IIEHTA®IKAINIA  HEJIHIMHUX CUCTEM 3  TEPIOJWYHUMMU
3OBHIIIHIMHU AISIMU (Yactuna I) / B.I'. 'oponenpkuit

AHorauisi. Posrmsinyto mpoGremy ineHtudikarii HeliHIHHUX CHCTEM 3 Hepiomuy-
HUMH 30BHIIIHIMHA AisiMu. KinbKicTh Takux Iiil y cuctemi He oOMexeHa, 1 Imi Iii Mo-
JKyTh OyTH SK aIUTHBHUMH, TaK 1 MyJIbTHIUTIKATUBHUMU. {7151 00UMCIIEHHS HEBiO-
MHX KOe(ili€eHTIB PiBHSIHb BUKOPHUCTAHO YacOBI PSAM CIOCTEPEKYBAaHUX 3MIHHUX
cucremu. JloBeneHa TeopeMa J03BOJISIE PO3AUINTH HEBIIOMI KOE(IIIEHTH CHCTEMH
Ha 3MiHHI Ta cTai. 3aIpoIOHOBaHa OOYNCIIOBATBHA NIPOLEAYpa 103BOJISIE YHUKHY-
TH MOXJIMBUX HMOMMJIOK, CIIPUYMHEHHX IUCKPETHICTIO CIIOCTEPE)XYyBaHHX YaCOBHX
psniB. Inentudikaniro HyIpOBHX KOe(illieHTIB BUKOHAHO JBOMA CIIOCOOAMH, IO
BUKJIIOYA€ IOMHIIKOBE OOHYJICHHS WICHIB PiBHAHb. MeTOZ 1IFOCTPOBAHO YMCIOBUM
OPUKIIAIOM igeHTHiKaLil Xa0TUYHOT CUCTEMH 3 NePIOANYHUMHE 30BHIIIHIMH TisIMH.

Kiouosi cioBa: izenTudikarmis, 3BudaiiHe nTudepeHniaibHe PiBHAHHSA, 30BHIIIHS
Iist, epioAuYHIN Koe(illieHT, CTamiid KoeilieHT.
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