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REDUCING RISK FOR ASSISTIVE REINFORCEMENT
LEARNING POLICIES WITH DIFFUSION MODELS

A. TYTARENKO

Abstract. Care-giving and assistive robotics, driven by advancements in Al, offer
promising solutions to meet the growing demand for care, particularly in the context
of increasing numbers of individuals requiring assistance. It creates a pressing need
for efficient and safe assistive devices, particularly in light of heightened demand
due to war-related injuries. While cost has been a barrier to accessibility, techno-
logical progress can democratize these solutions. Safety remains a paramount con-
cern, especially given the intricate interactions between assistive robots and humans.
This study explores the application of reinforcement learning (RL) and imitation
learning in improving policy design for assistive robots. The proposed approach
makes the risky policies safer without additional environmental interactions. The
enhancement of the conventional RL approaches in tasks related to assistive robotics
is demonstrated through experimentation using simulated environments.

Keywords: assistive robotics, reinforcement learning, diffusion models, imitation
learning.

INTRODUCTION

Care-giving and assistive robotics are some of the most promising potential appli-
cations for Al systems. For decades already, it has been an active research field.
This is certainly unsurprising, given the growing number of people who need
care, which at some point may not be difficult to sattisfy in some countries [1; 2].

Moreover, given the circumstances of war actions in Ukraine, the demand
will constantly grow. Tens of thousands of people will require rehabilitation, and
some of them will require physical assistance for very long periods. To satisfy
that demand, some amount of automation is certainly necessary. Although given
the high costs of assistive devices, not everybody can afford them, the technologi-
cal progress and drastic simplification of development and hardware requirements
will help to democratize them and make them affordable.

One of the biggest concerns of that progress is safety [3]. At the moment,
most devices employ sophisticated manually-designed policies and mechanisms
to ensure robustness and safety. Since assistive robots interact with humans, it is
desirable to reduce the risk, or in other words, improve the success rate.

One way of automating the policy design process is machine learning. For
instance, reinforcement learning (RL) allows for policy learning from data of in-
teraction with humans, which are difficult to rigorously model and predict [3; 4].
Manually designed policies have difficulties with such cases, as it’s difficult to
make them robust to the modeling errors.

This problem is amplified when humans can demonstrate only limited coop-
eration, such as in the case of people with disabilities. Cheap robotic arms (which
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are more affordable) are also difficult to rigorously model, which makes vendors
choose expensive hardware instead.

RL already has been applied to tasks that involve difficult-to-model physical
tasks, such as ziplock bag manipulation [5] or cable manipulation [6]

However, RL policies often require millions of time steps for full conver-
gence, and while the explored good trajectories are produced much earlier, it
takes a while for the policies to stop breaking them for the sake of exploration.

In this paper, a way of not taking the burden of training an algorithm until
full convergence, but rather collecting those first successful trajectories and using
them to fit a robust policy is considered. This allows for reducing the risk of fairly
non-robust policies without any additional interactions with the environment. It is
demonstrated that this approach outperforms the bare model-free RL method in
the tasks of assistive robotics, simulated using Assistive Gym [7].

PRELIMINARIES

Markov Decision Process (MDP) M is a tuple (S,4,r,T), where S— state
space; 4 — action space; r:SxA4—> R — reward function, T = P(s,,;|s,,4a,)
— probability that an environment will transition to the state s,,; given that the
current state is s, and the action taken a, .

Reinforcement Learning algorithm takes MDP M and searches for a pol-
icy m, that maximizes the discounted return objective:

n =argmax E._,. D oyr(s.a,).
1=0

Here tis a trajectory (x,,aq,X;,4;,...x7 ) usually sampled by applying a pol-
icy m.

Model-free reinforcement learning algorithms are considered, namely Ac-
tor—Critic, which learns a value function v(s) and a policy function ©(a|s). The

latter is often minimized using the former for the advantage estimation. There are
multiple instances of the Actor—Critic algorithm. For instance, Proximal Policy
Optimization [8] or A3C [9].

Also diffusion models for policy fitting are considered. Namely, Denoising
Diffusion Probabilistic Models (DDPM), which are generative models based on
Stochastic Langevin Dynamics [10].

The idea is to fit a noise-predicting network ¢, that predicts a gradient

VE(x). This gradient is computed and applied repeatedly
x'=x—-yVE(x)

to recover an input x, from its noised version xj . These models are trained on a
set of inputs and then are used to generate novel inputs from pure noise. This ap-
proach to imitation learning is a focus of [11]

For assistive robotics, Assistive Gym [7] is used. It is modified it to be more
suitable for using it with diffusion policies. See the Experimental Validation sec-
tion for details.
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METHOD

First, a model-free reinforcement learning algorithm is employed to discover suc-
cessful trajectories. Proximal Policy Optimization (PPO) algorithm is chosed in
this paper, as it is widely used and is very easy to apply. That algorithm collects
the trajectories by interacting with an environment and fits its policy function by
minimizing the following loss:

Lppo(9) = Erwpq)(-) min(r, 4, clip(r; 1 —¢g,,1+€,)4,).
Specifically, a fully connected network with ReLU activation functions is

used to approximate the policy/value functions. This decision was made because a
low dimensional state is being observed instead of images (Fig.1).

/ Online \
Pretraining .| Proximal Policy Diffusion Transformer
(Underfit) ~ Optimization Policy
l ] \
Environment /_L\
A
Trajectory Offline training
(successful)

\ Use, validate and test /

Fig. 1. A diagram schematic of a proposed algorithm. First, a baseline online RL
policy is pretrained, then successful trajectories are sampled, and a diffusion poli-
cies algorithm is fine-tuned on those in an offline manner

A PPO is trained as a baseline. The problem with PPO is that it requires a lot
of samples, which is often too expensive (in computing) or dangerous (when ap-
plied in the real-world setting). Therefore, it is trained for a fixed number of time
steps, stopping it often way before the full convergence.

When applied to assistive robotics tasks, PPO produces high-risk policies, as
evidenced by experiments (see EXPERIMENTAL VALIDATION section).

To reduce the risk, successful trajectories produced by high-risk PPO-based
policies are selected and imitation learning techniques based on diffusion models
are applied.

r,(s;) is defined as a new reward function, which may be different from the
original and is binary, meaning it is either 1 or 0. For instance, in the Assistive
Feeding task, success is defined like a predicate “The food on a spoon is safely
placed in the mouth of a human within 10 seconds”. This sparse reward is given
right before the episode’s termination. For brevity, denote

I”S(‘C) = ZI’:Y(SI-).
S; €T

Also, define mgy(a | s,success) as a policy conditioned on (a,s) being a part
of the successful trajectory. This approach is inspired by control as inference
problem statement [12].

Suppose a PPO policy my is trained. If one takes
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T
P¢(T | success) = p(s )H 7T¢(ai | s;,success)p(s; | s;_y,a;_1)
i=1
and fits the Diffusion Policy on (s,a) ~ py(t|success) , they’d arrive to a much
more robust policy, given the assumption that the set of successful trajectories is
enough to cover the stochasticity and uncertainty of the environment. For the ro-
botics tasks considered, this assumption tends to be true in practice.

The diffusion policy is approximated using a diffusion transformer architec-
ture, proposed in [11]. It is simplified a bit for the environments with shorter tra-
jectories. Also, it has been found that U-Net-based architectures give almost the
same results, so it is not include them in this study.

Algorithm. Let’s summarize an algorithm described earlier.

1. Train a PPO policy for Tpp, time steps.

2. Sample a dataset of trajectories using a pre-trained PPO policy
D={t;,i=L..,N|t;~ pppo(1)}.
3. Sample a dataset of successful trajectories
Dsucc = {’Cl’EED,VS(’C)Il} .

4. Initialize the weights of a neural net 0.
5. Repeat for M epochs:
retrieve a batch of trajectories B from the dataset

B={(sy,a) s Spur>sr)isi =1 . Ng}s
following [11] set A4=(ay,...,a;,7) and O=(sy,....,S;.r), and minimize the
DDPM training loss:
Lpppu (B) = MSE(e",69(0,, 4, +£*,K)); 0'=0—=1VLpppy (B) ;
update neural networks’ parameters:
0'«0;

Here:

Tppo — num timesteps for the PPO to be trained on;

N — number of all samples from the PPO policy;

N p — batch size for the diffusion model;

y — learning rate;

T — Diffusion Policy horizon. Can also be different for actions and obser-
vations. Actions of this horizon are predicted conditioned on observations.

For a neural network architecture, the Diffusion Transformer [11] architec-
ture is used (Fig. 2).

Fig. 2. A trajectory produced by the policy trained using the proposed method. The task —
Assistive Feeding
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EXPERIMENTAL VALIDATION

For experimental validation, Assistive Gym [7] simulation benchmark is used.
The observation space usually contains a low dimensional arm state, human head
state, and some other task- or tool-related statistics. All the tasks are done using
the simulated Jaco robot arm. The proposed method is evaluated on the following
tasks:

1. Assistive Feeding. A task where a robotic arm uses a spoon full of food
to feed a person. The task is considered successful if 75% of food is in the per-
son’s mouth. The resulting trajectory is depicted in Fig. 2.

2. Assistive Drinking. A task where a robotic arm uses a cup full of water
to assist a person with drinking. The task is considered successful if 75% of water
is in the person’s mouth.

3. Assistive Bed Bathing. A task where a robotic arm uses a sponge to wash
a person. The task is considered successful if the necessary spots of a person’s
surface are touched with a sponge.

4. Assistive Arm Manipulation. A task where a robotic arm is used to re-
position a person’s arm. The task is considered successful, if the arm is success-
fully repositioned.

First, a PPO baseline is trained until it is sufficient for a policy to produce
successful trajectories. In the study, 1000 successful trajectories have been col-
lected for each task. It has been found, that for many tasks, the number of trajec-
tories less than 300 degrades the performance of the method.

After that, sample successful trajectories are sampled from the PPO policy,
as described in Algorithm 1, and a diffusion policy is fit on those.

The results are given in Table.

Results of fine-tuning the PPO policies with the proposed method

Success (%)

Task - .
PPO risky, % Fine-tuned (proposed), %
Arm Manipulation 19 71
Bed Bathing 2 12
Drinking 10 56
Feeding 33 86

Arm Manipulation and Drinking PPO is trained for 1 million steps. Bed
Bathing PPO is trained for 2 million steps (to get any reasonable policies). Feed-
ing PPO is trained for 400k steps. Please note, in order to improve baseline and
diffusion performance, episodes are terminated if success is achieved. Originally,
termination only occurred when the number of steps exceeded a limit. It’s been
found that this affects the method’s performance

As one may observe, the resulting policy outperforms the underfit ones, but
also performs as good or better than the long-trained PPO policy. Remarkably,
this is achieved without any additional environment steps, just using the offline
data. One may also sample those trajectories during the training of a baseline, thus
removing the need to sample them afterward.

The results that good could be explained by the properties of the modern
imitation learning techniques, such as diffusion policy, used in this paper. It has
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been observed, that these methods demonstrate interesting out-of-distribution
generalizations [5].

It is also apparent, that the Bed Bathing benchmark though is improved, but
still is not beaten. It is hypothesized, that this is due to a low diversity of the col-
lected trajectories, insufficient to cover the entire distribution.

In addition to generalization, it is hypothesized, that since the PPO itself bal-
ances exploration and exploitation, this may prevent it from fast convergence on
successful trajectories, continuously trying to look for other modalities.

Another interesting observation is that when the PPO baseline is trained until
full convergence using up to several million steps, it usually gets on-par perform-
ance with the fine-tuned version. Although, on the Feeding benchmark fully con-
verged PPO got an 87% success rate, while its fine-tuned version achieved 98%.
But even without that, it’s still a much worse result than the fine-tuned approach,
since it requires additional millions of time steps.

CONCLUSION

In this paper, a novel approach to reduce risk in assistive reinforcement learning
policies using diffusion models is proposed. The proposed method leverages the
strengths of both model-free reinforcement learning and imitation learning tech-
niques based on diffusion models to improve policy robustness without additional
interactions with the environment.

The effectiveness of the proposed approach is demonstrated through experi-
mental validation on various assistive robotics tasks simulated using Assistive
Gym. By fine-tuning policies obtained from a baseline PPO algorithm with off-
line data, significant improvements in success rates are achieved across different
tasks. Importantly, the method outperformed risky policies generated directly by
PPO.

The results indicate the potential of diffusion-based imitation learning tech-
niques in enhancing the safety and reliability of assistive robotics systems.

Future work could explore additional refinements to the diffusion-based pol-
icy fitting process and include re-exploration iteration for diffusion policies, to
make the process iteratively switch between fine-tuning and exploration.
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SHWXXEHHA PU3UKIB CTPATET'II HABYAHHS 3 NIJKPIIUVIEHHAM JJIsI
JorJjsiay 13 AMey3IMHUMUA MOAEJISIMU / A.M. Turapesko
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AnoTauisi. Jlonomixkaa poGOTOTEXHIKa st AOTIISIIY, 0 PO3BHBAETHCS 3aBISIKU J10-
CSICHEHHSIM IITYYHOTO iHTEJIEKTY, sIBIIsiE COOO0 MEPCIEKTUBY TSl BUPILICHHS 3pOC-
TAIOYOro MOMUTY Ha JOTJIsI, OCOONMBO B KOHTEKCTI 301IbIICHHS KIJIBKOCTI OCi0, sKi
fioro nmotpedyroth. EdextuBHi Ta 6e3nedHi JOMOMDKHI IPUCTPOT MOIIU O CTaTH KO-
PUCHUMH, OCOONUBO B KOHTEKCTI MiJBHIIEHOTO IMOMUTY Yepe3 TPaBMHU, MOB'A3aHi 3
BilfHOI0. X04a BapTicTh € Oap'epoM AJIS JOCTYIMHOCTI, TEXHOJIOT1YHUNA IPOTPEC MOKE
3pobuTH ix OB focTynHUMH. Besrneka € HalBaKIMBIIIOO IPOOIEMOI0, 0COOIMBO
3 OISy Ha MOJEJbHY CKIaTHICTh B3aeMOJil Mik poOoramu Ta nroasmu. Jocmi-
JDKEHO 3aCTOCYBAaHHS HAaBYaHHS 3 MIAKPIIUICHHSM Ta HaBYaHHS IMITalli€ro Juisl HOo-
JHITIICHHS TPOLECY MPOEKTYBAHHS CTpATEriil Ul aCHCTEHTHUX poOoTiB. 3amporo-
HOBaHUH MiXiJ Iomomarae 3poOuTH HepoOacTHI crTparterii MiJBHUIIEHOTO PU3HKY
Oinbur Ge3medyHHME Ge3 10JaTKOBUX B3aeMoii i3 cepenoBuiueM. Lllmsxom excrie-
PHMMEHTIB y CHMYJbOBAaHUX CEPEAOBHUIIAX IPOJEMOHCTPOBAHO IepeBary, sKy Lei
MiAX1A Ja€ B TO€IHAHHI 3 TPAAWLIMHUMH METOJAaMH HaBYAaHHS 3 MiIKPIIUIICHHSIM
y 3aBJIaHHSIX, [OB'SI3aHUX 3 JOMOMIXKHOI POOOTOTEXHIKOO.

KurouoBi ciioBa: nomomikHa poOOTOTEXHIKA, HABYAHHS 3 MiAKPIIUICHHIM, Iudy-
31iiH1 MOJIeIl, HaBYaHHS IMITaIlI€0.
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