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Abstract. Skin cancer is one of the most prevalent malignancies worldwide. A criti-
cal factor in reducing mortality rates is the early detection. It underscores the need 
for accessible Computer-Aided Diagnostic (CAD) systems. Recent advancements in 
Deep Learning (DL) have shown great promise in addressing this challenge. Despite 
this progress in the field of machine learning, researchers encounter numerous ob-
stacles when it comes to skin cancer classification. This article examines the current 
state of DL-based skin cancer diagnostics. Critical aspects of system development, 
including data preprocessing, model training, and performance evaluation, are ad-
dressed. Moreover, the article highlights opportunities for innovation that could sig-
nificantly advance the field. By providing a comprehensive overview, this article 
aims to guide researchers and practitioners in optimizing DL models, addressing ex-
isting limitations, and exploring emerging trends to enhance diagnostic accuracy and 
accessibility. 
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INTRODUCTION 

Skin cancer affects millions of individuals every year. Malignancy originates in 
the skin’s primary layers — the epidermis, dermis, and hypodermis. Due to its 
exposure to ultraviolet (UV) radiation, the epidermis is the most common site for 
skin cancers. Keratinocytes and melanocytes in these layers can undergo muta-
tions due to prolonged exposure to UV radiation, which can lead to malignancy. 
The three major types of skin cancer include Basal Cell Carcinoma (BCC), 
Squamous Cell Carcinoma (SCC), and Malignant Melanoma [1]. 

BCC is the most common skin cancer, typically presenting as a slow-
growing, pearly lesion. While it rarely metastasizes, untreated BCC can cause 
significant local tissue damage. SCC, the other type, is more aggressive and capa-
ble of metastasis. It often appears as scaly, crusty lesions, especially on sun-
exposed skin, SCC requires timely intervention to prevent systemic spread. Ma-
lignant melanoma, though rare, is the most aggressive form of skin cancer and is 
prone to rapid metastasis [1]. 

Regardless of the type of skin cancer, early detection is crucial for successful 
treatment. Still, there are many barriers preventing timely diagnosis. According to 
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the World Health Organization, there is a global shortage of dermatologists, par-
ticularly in low- and middle-income countries [2]. Studies show evidence that 
lower-income populations are more likely to have advanced stages of skin cancer 
[3]. Hence, obtaining professional help to determine whether a lesion is malignant 
can be challenging. Even in developed regions, busy lifestyle and/or financial 
constraints can prevent individuals from seeking medical attention. 

Computer Aided Diagnostics (CAD) system is a solution for assisted or 
automated diagnostics. They can be especially helpful in reducing human errors 
and expanding access to advanced medical care. Deep Learning (DL) with its ad-
vancements in recent years is a promising solution for skin cancer CAD. Machine 
Learning (ML) models can help to detect malignant lesions early via specialized 
or common hardware, potentially covering gap in dermatological services. Such 
systems can be particularly useful as prescreening tools, indicating cases where 
professional help is necessary. 

DL has revolutionized various areas over the recent years, including medical 
imaging. During the past decade, researchers have developed numerous DL mod-
els for skin cancer classification with varying levels of success. This diversity of 
models and methods creates a sophisticated landscape to navigate. The article 
aims to underline key challenges and obstacles that researchers face developing 
skin cancer DL model as of 2024, providing examples of solutions proposed in 
existing researcher. Finally, it highlights areas for improvement that could take 
current DL-based CAD systems to a new level. 

To simplify navigation, the article is divided into sections, each focusing on 
a critical component in the development of DL-based CAD systems for skin can-
cer detection. 

1. Researchers and Communities: An overview of labs, teams, and organiza-
tions that have made significant advancements in DL-based skin cancer tasks in 
recent years. 

2. Datasets and Data Challenges: A list of widely used datasets with their 
descriptions. This section also includes an overview of data based obstacles. 

3. Development Pipeline: Addressing data normalization, augmentation, and 
techniques to fix data challenges highlighted in the previous section. 

4. Model Training and Optimization: This section explores the complexities 
of selecting model architectures, leveraging transfer learning, and optimizing hy-
perparameters. 

5. Evaluation and Validation: Various metrics suitable for the task are ex-
plored in detail. 

6. Opportunities for Innovation: Directions and areas that could significantly 
enhance the quality of DL-based CAD systems. 

7. Guidance for Emerging Researchers: Practical advice for newcomers to 
the field, including best practices in research design, navigating the literature, and 
identifying emerging trends. 

By exploring these themes, the article provides a concise resource highlight-
ing the current challenges, solutions, and future directions in the application of 
DL to skin cancer detection. Ultimately, the aim is to contribute to the develop-
ment of more accurate, accessible diagnostic tools that can improve patient out-
comes and reduce healthcare disparities. 
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RESEARCHERS AND COMMUNITIES 

Stanford University Team. In 2017, the study “Dermatologist-Level Classifica-
tion of Skin Cancer with Deep Neural Networks” was published in Nature by 
a team from Stanford University. They researched a dataset of approximately 
130,000 clinical images representing over 2,000 different skin diseases. They took 
Google Inception v3 CNN architecture, pre-trained on the ImageNet dataset, and 
fine-tuned it for skin lesion classification. Performance was validated against a 
group of 21 dermatologists, ensuring clinical relevance. It turned out the model 
achieved performance on par with board-certified dermatologists [4]. 

International Skin Imaging Collaboration. The International Skin Imag-
ing Collaboration (ISIC) is the largest consortium that made a significant contri-
bution to the skin cancer classification problem. The collaboration created the 
largest publicly available skin cancer dataset and conducted multiple challenges 
to encourage the development of advanced algorithms for skin lesion analysis. In 
mid-2024, ISIC released its latest dataset [5]. ISIC promotes transparency and 
reproducibility in dermatological research while safeguarding patient privacy. Its 
extensive use in numerous studies has made it a cornerstone for developing and 
validating DL models for skin cancer diagnostics, significantly accelerating pro-
gress in the field. 

Memorial Sloan Kettering Cancer Center. Memorial Sloan Kettering 
Cancer Center (MSKCC) is one of the world’s leading institutions dedicated to 
cancer treatment, research, and education. In dermatology, MSKCC implemented 
AI to support the detection of melanoma. The institution is actively working on 
implementing CAD systems to improve the effectiveness of diagnostics. They 
consider AI a complementary tool for medical experts [6]. 

Google Health and DeepMind. Google’s research teams actively worked to 
apply DL to medical images. For instance, Yuan Liu and Peggy Bui published a 
paper titled “A Deep Learning System for Differential Diagnosis of Skin Dis-
eases” in 2019 [7]. They developed a system that was able to accurately differen-
tiate 26 common skin conditions. 

Individual Researchers. There are numerous ML enthusiasts and experts 
working on the problem all over the world. For example, Yilmaz et al. achieved 
an accuracy of 82% with on the ISIC 2017 dataset with the NASNetMobile model 
[8]. Baygin et al. integrated textural and deep features to develop a pyramidal hy-
brid model receiving a classification accuracy of 91.54% with 10-fold cross-
validation [9]. Agarwal and Singh were able to get 86.65% accuracy on ISIC Ar-
chive utilising convolutional neural networks with transfer learning [10].  

Many more studies report remarkable results with the models and the data 
used. Each year, hundreds of new articles on the topic are being published, some 
of them making breakthroughs through usage of new technology or metric. The 
article mentions key pioneering research as examples of successful problem-
solving for medical imaging. The main idea of this article is to guide through the 
current landscape of skin cancer images with DL leading to even more advances 
in the field. 

DATASETS AND DATA CHALLENGES 

Data is the base of any ML algorithm. The success of any DL project heavily de-
pends on access to robust and comprehensive datasets as well as the correct usage 



Navigating challenges in deep learning for skin cancer detection 

Системні дослідження та інформаційні технології, 2025, № 2 45

of those. By processing the data, the model extracts the most important features 
from it so that it can make correct predictions on unseen data of a similar nature. 
D. Wen et al. (2022) made an exhaustive list of datasets that were publicly avail-
able at the time [11]. The section below mentions key datasets from that list, add-
ing the data that was released since 2022. 

Datasets. ISIC Archive. The ISIC Archive [5] is the largest data repository 
with cancerous skin images so far. As of today, the number of open-for-usage 
samples is nearing half a million. More than 400,000 of those are images released 
as part of the latest ISIC Challenge — ISIC 2024 [12]. The archive includes a di-
verse range of skin lesions: melanomas, nevi, BCCs, SCC, etc. It includes both 
annotated and unannotated data sourced from various international centers. Some 
of the images contain precise borders of the lesion, allowing not only classifica-
tion but segmentation as well. It might be the most impactful contribution to DL-
based skin cancer CAD systems in terms of data. 

HAM10000. The dataset [13], also known as “Human Against Machine with 
10,000 training images” (HAM10000), published by Philipp Tschandl et al. 
(2018), is the most popular dataset for DL skin cancer classification. It contains a 
total of 10,015 dermoscopic images, categorized into seven common types of skin 
lesions: actinic keratoses, basal cell carcinoma, benign keratosis-like lesions, der-
matofibroma, melanoma, melanocytic nevi, and vascular lesions. Each image is 
labeled with a confirmed diagnosis, verified through histopathology, follow-up 
examinations, or expert consensus. It also includes metadata detailing patient 
demographics such as age, gender, and lesion location, which adds context for 
model training. 

Due to its high-quality data, HAM10000 was used in numerous articles, 
normally combined with transfer learning to compensate for the lack of size. For 
instance, A.T. Priyeshkumar et al. (2024) developed an ensemble DL model for 
skin lesion classification using HAM10000, achieving high accuracy in differen-
tiating between lesion types [14]. T.M. Alam et al. (2022) proposed a novel CNN 
architecture trained on HAM10000, focusing on improving classification per-
formance through data augmentation techniques [15]. H.A. Owida et al. (2024) 
investigated the use of transfer learning with pre-trained models on HAM10000 to 
enhance melanoma detection [16]. A. Ameri et al. (2020) explored feature extrac-
tion methods using HAM10000 to improve the interpretability of DL models [17]. 
S.S. Chaturvedi et al. (2020) conducted a comparative study of DL algorithms on 
the HAM10000 dataset to identify the most effective approaches for skin lesion 
classification [18]. 

Non-ISIC Data. While the ISIC Archive and HAM10000 datasets are widely 
used in recent skin lesion research, several other datasets have historically con-
tributed to the field, particularly before the availability of ISIC data. 

The PH² dataset [19], developed by Pedro Hispano Hospital in Portugal, 
contains 200 dermoscopic images focusing on melanocytic nevi and melanomas. 
Despite its small size, the dataset is highly valued for its detailed manual segmen-
tation masks and clinical annotations that include colors and dermoscopic struc-
tures. It is often used in studies emphasizing precise lesion segmentation and the 
analysis of dermoscopic features. 

The MED-NODE dataset [20], created by the University of Twente in the 
Netherlands, includes 1,700 clinical (non-dermoscopic) images of melanomas and 
benign melanocytic nevi. Diagnoses in this dataset are confirmed through histopa-
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thology. It is particularly useful for research focusing on classification based on 
clinical photographs rather than dermoscopic images. This dataset presents chal-
lenges like variations in lighting, skin tone, and image quality, making it a valu-
able resource for developing models that can handle real-world conditions. 

The Dermofit Image Library [21], developed by the University of Edin-
burgh, includes approximately 1,300 high-resolution images spanning 10 skin 
lesion categories. However, it is accessible only under a commercial license, 
which can limit its availability for some researchers. The library is often used in stud-
ies requiring high-resolution images and advanced feature extraction techniques. 

The SD-198 dataset [22], compiled from dermatology atlases, contains 6,584 
images across 198 different skin disease classes. It is particularly valuable for 
multi-class classification research and for developing models that can identify 
rare skin conditions. 

These datasets, while smaller in scale compared to ISIC, offer unique advan-
tages by addressing diverse imaging conditions and focusing on specific research 
challenges, continuing to play a crucial role in dermatology research. 

Data Challenges. Class Imbalance. Datasets often have a disproportionately 
large number of benign lesions compared to malignant ones. Such skewed data 
causes model bias and poor sensitivity in detecting rare but critical cases like 
melanomas. This problem is typical for skin cancer data. For instance, in the ISIC 
2020 dataset, the benign nevi-to-melanoma ratio is approximately 9 to 1 [5]. If not 
handled properly, this imbalance can lead to high overall accuracy but poor per-
formance when detecting minority classes, which are crucial for early diagnosis. 

Underrepresentation of Diverse Skin Types. In recent years, it was pointed 
out that available skin cancer data is insufficient in terms of darker skin tone rep-
resentation. It can affect a model’s accuracy across different ethnicities and exac-
erbate health disparities [11], [23]. The research community considers this a seri-
ous problem as, even though skin cancer is less prevalent among individuals with 
darker skin, it is often detected at later stages, leading to drastic outcomes. For 
instance, Black individuals are three times more likely to be diagnosed with late-
stage melanoma [24]. One of the reasons is that melanoma for that part of the 
population sometimes appears on less visible areas, such as the palms, soles, or 
under the nails, which are less frequently examined [25]. 

Privacy Concerns and Data Sharing Limitations. Skin cancer imaging data 
is part of a person’s personal information. Consequently, it falls under many laws 
and acts aimed at protecting users’ data. As this data is of medical nature, it com-
plicates the situation even more. Among the commonly known regulations are: 

 Health Insurance Portability and Accountability Act [26] (HIPAA) in the 
United States. 

 The General Data Protection Regulation [26] (GDPR) in the European Union. 
These regulations impose strict guidelines on the handling, sharing, and 

processing of medical data. Understanding these restrictions is crucial for re-
searchers aiming to access and utilize dermatological datasets while ensuring 
compliance with legal and ethical standards. 

Reluctance to Share Proprietary Datasets. Self-collected datasets offer re-
searchers distinct competitive advantages. This method of data acquisition allows 
influencing the data flow from the very start, forming a more precise understand-
ing of the data nature. At the same time, exclusive access to this data lets institu-
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tions uniquely fine-tune algorithms for enhanced performance, potentially leading 
to breakthroughs in skin cancer detection and diagnosis. Sulaiman Khan et al. 
(2022) [28] found that researchers often use private datasets exclusively or com-
bine them with open data to achieve superior results in skin cancer classification 
tasks. Other reasons to withhold data might range from ethical to licensing con-
cerns. Another issue is data privacy. This practice highlights the advantages of 
proprietary data but also underscores a significant barrier to progress in the field. 
When models are trained on private datasets, it becomes challenging to replicate 
studies, validate findings, or compare the effectiveness of different methodologies. 

Data Labeling. Many of the publicly available skin cancer image samples 
are currently unlabeled, which makes them impossible to use with supervised DL 
algorithms. For instance, the ISIC 2020 dataset [5] includes 10,982 images with-
out assigned classes. Meanwhile, accurately annotating medical images requires a 
high level of domain expertise, making the process both time-consuming and costly. 

Artefacts in Image Acquisition. The most common way in which skin cancer 
images are obtained is dermatoscopy. It is a non-invasive imaging technique that 
involves examining and capturing skin lesions via a dermatoscope. Nevertheless, 
images of a dataset are often collected in different centers and institutions that 
utilize instruments with varying characteristics. However, when all the data is col-
lected by a single facility, it may cause variations in resulting images, leading to 
models overfitting to device-specific artifacts instead of focusing on generic le-
sion features. Studies have shown that models trained on homogeneous datasets 
perform poorly on images from diverse sources [29], [30]. 

Ethical Considerations. Besides norms and regulations, one should realize 
that medical data is deeply personal. Processing it unavoidably raises some ethical 
concerns. Syed F.H. Shah in “Ethical implications of artificial intelligence in skin 
cancer diagnostics: use-case analyses” (2024) found that existing skin cancer 
analysis solutions require a great deal of transparency and collaboration to avoid 
potential ethical problems and misuse [31]. 

To resolve the ethical issues, the research community must show awareness 
when handling such sensitive data. In the paper “Ethical considerations for artifi-
cial intelligence in dermatology: a scoping review,” Emily R. Gordon (2024) 
identified key principles to follow to avoid ethics-related risks like fairness, inclu-
sivity, transparency, accountability, etc. [32]. 

Additional Clinical Criteria. While lesion images serve as the primary 
source of information, various studies suggest that including more contextual data 
can positively impact classification performance. Esteva et al. (2017) noted that 
including clinical data could further enhance performance [4]. Haenssle et al. (2018) 
demonstrated that combining dermatoscopic images with patient information im-
proved melanoma detection rates [33]. Pacheco and Krohling (2019) found that 
integrating clinical metadata with images in DL models led to higher accuracy in 
skin lesion classification [34]. These additional criteria may vary: patient age is 
important because certain age groups are more inclined to have some types of 
skin cancer than others, evolution over time is one of the key characteristics that 
experts use to make a decision on lesion state, as well as the size of the lesion. 
Embedding mathematical measures derived from the image, such as fractal di-
mension, may also contain insights useful for correct classification [35]. 

Incorporating these features into a classification model is a new challenge, as 
image and contextual data normally have different modalities. Making a model 
more complex to handle this may cause unintended overfitting. Therefore, the 
challenge is to balance model complexity while integrating features effectively. 
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Preprocessing Stage. In the previous section the key data challenges were 
identified. Many of them such as class imbalance, ethnic groups underrepresenta-
tion, restricted data, unlabeled data, inconsistency in the data gathering tools and 
noise can be addressed on a data preprocessing stage. In this section the key steps 
of data preparation are discussed. 

Balancing Data. Some datasets do not suffer from class imbalance issues. 
For example, Kaggle dataset for malignant melanoma classification [36] contains 
approximately 5000 samples of each class which makes it a good option for fine 
tuning lightweight melanoma classifiers for exploration and education purposes. 

Nevertheless, most of the available data samples are severely imbalanced 
with the largest amount of lesions being benign. For instance, HAM1000 dataset 
contains around 60% of benign nevus samples. Provided that this dataset is used 
for multi class classification, it makes it very imbalanced 

Data Augmentation. A typical method for handling imbalanced data involves 
performing augmentations on the training data. Shen (2022) proposes an effective 
way of augmenting data for DL skin cancer classification with a significantly re-
duced search space of 60 possible transformations, compared to existing methods 
like AutoAugment and RandAugment [37]. Himel et al. (2024) applied data aug-
mentation to 3,295 malignant images in the HAM10000 dataset, increasing the 
number to 5,000 [38]. These augmentations included rotation, flipping, and zoom-
ing. However, their approach may seem somewhat straightforward, as they simul-
taneously disregarded more than 1,500 benign lesion images to balance the data. 
This was also risky, as it essentially balanced the data through data loss.  Polat et 
al. (2020) augmented images of the same dataset with noise, scaling, and rotation, 
increasing the total number of images to more than 33,000 [39]. Walker et al. 
(2019) used cropping in addition to the aforementioned methods while working 
with the ISIC 2017 Challenge [5], [40]. Ali et al. (2021) applied color-shifting 
using principal component analysis to create augmented images [41]. 

Another way of augmenting images is application of Generative adversarial 
network (GAN) architecture. Wu et al. (2020) did a review of GAN application 
for augmenting skin cancer images to solve data imbalance problem [42]. In arti-
cle they note that various GAN architectures, including DCGANs [43], style-
based GANs [44], TED-GAN [45], SPGGAN [46], and conditional GANs 
(CGANs) [47], have been employed to generate high-quality, diverse synthetic 
images. Enhancements such as artifact removal, attention modules, informative 
noise vectors, and stability improvements like the Two-Timescale Update Rule 
have further optimized GAN performance. Wu state that these methods have consis-
tently improved classification metrics — including accuracy, sensitivity, specificity, 
and F1 scores — by providing richer training data and more reliable image genera-
tion, ultimately enhancing the effectiveness of skin cancer classification models. 

While this approach offers benefits, it also comes with potential risks and 
drawbacks. Excessive noise, extreme scaling, or unusual rotation angles can dis-
tort images to the point where essential features are obscured or altered. If the 
augmentation methods produce images that are too similar to each other, the 
model might overfit to these synthetic variations rather than learning generalized 
features. This reduces the model’s ability to perform well on truly unseen data. 
Adding noise can sometimes degrade image quality to a level where the model’s 
ability to extract meaningful features is compromised. Drawbacks also include 
increased computational cost of creating and processing larger amount of data. 



Navigating challenges in deep learning for skin cancer detection 

Системні дослідження та інформаційні технології, 2025, № 2 49

Fixing Ethnic Representation Issues. To mitigate the issue of underrepresen-
tation, several strategies can be employed to improve both the diversity of data 
and the fairness of DL models. 

 Сolor jittering, which adjusts the brightness, contrast, and saturation of 
images, can simulate a broader range of skin tones. 

 Histogram equalization can improve the visibility of features across dif-
ferent skin tones. 

 Style transfer can modify images to appear as if they belong to varied skin 
types. 

Pope et al. (2024) compared training model on imbalanced and sampled 
datasets [48]. However, their results show that, albeit the sampled model tends to 
be less biased towards dark-toned skin, the overall accuracy decreases. 

Beyond augmentation, synthetic data generation can further expand datasets, 
particularly for underrepresented skin tones. GANs are useful for generating syn-
thetic images that mimic lesions on darker skin, while domain adaptation tech-
niques can align feature representations to ensure models perform well across dif-
ferent skin tones. Rezk et al. (2022) composed a skin cancer dataset from existing 
open access data and applied style transferring to make it more diverse in terms of 
skin tone [49]. 

There also were instances of less traditional approach to solve this problem. 
Continuing their study of 2019, Walker et al. (2024) used sonification of skin 
cancer data to decrease influence of skin tone on classification [50]. The analysis 
demonstrated high and comparable diagnostic accuracy for both fair skin (FS) and 
darker skin (DS), with ROC curve AUCs of 0.858 and 0.856, respectively, indi-
cating no significant difference between the two groups. Sensitivity and specific-
ity values were similar (around 80–85%), confirming the model’s consistent per-
formance in detecting true positives and negatives across diverse skin tones. The 
results suggest that the classifier maintains equivalent diagnostic reliability for 
both FS and DS, even with the limitations of smartphone-based imaging. 

To ensure fairness in model performance, algorithmic adjustments can be 
utilized. Reweighting samples can help balance training by assigning higher 
weights to underrepresented classes, while bias correction layers can be integrated 
into models to correct inherent biases. 

Data Cleaning. Data cleaning is a crucial step in DL, involving the prepara-
tion and preprocessing of data to improve its quality for model training [51]. This 
process includes various data processing techniques that enable more effective 
feature extraction, ultimately enhancing model performance. 

Normalization. To address inconsistencies in the conditions under which im-
ages of skin lesions are captured, data normalization and denoising are essential. 
Normalization techniques, such as Gray World, Shades of Gray, or max-RGB 
algorithms, adjust the color balance of images to compensate for lighting differ-
ences [41], [52].  Global or adaptive histogram equalization methods, like Con-
trast Limited Adaptive Histogram Equalization (CLAHE), can be applied to im-
prove contrast and standardize the intensity distribution across images [53], [54]. 
Gamma correction is another option, adjusting non-linear luminance or color val-
ues to standardize brightness and contrast. 

Standard normalization methods, such as scaling pixel values to have zero 
mean and unit variance (z-score normalization) or scaling between 0 and 1 (min-
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max normalization), are commonly used in image preprocessing [55]. For exam-
ple, 0–1 normalization was utilized in [41]. These steps ensure that images fed 
into DL models are consistent and of high quality. 

Noise Reduction. Removing noise from images is critical to enhance quality 
and improve model accuracy. Common strategies include applying filters like 
median or Gaussian filters to smooth images and reduce noise. Midasala et al. 
(2024) applied a top-hat transform to remove thick hairs, while filters effectively 
eliminated noise and thin hairs, albeit with limitations on contrast-based histo-
gram equalization [56]. Morphological operations, such as opening and closing, 
assist in removing small artifacts. 

Body hair presents a specific challenge in analyzing skin images, as it can 
obscure important lesion features. Algorithms like the DullRazor detect hair pix-
els using edge detection and inpaint these regions to remove hair from the image 
[57]. Thresholding methods identify hair regions so that they can be cleaned out. 

Another approach to denoising is the use of autoencoders. These models 
learn to create a compressed representation of the input and reconstruct it, effec-
tively removing noise in the process. Maurya et al. (2024) used autoencoders for 
denoizing and feature extraction [58]. 

Segmentation. Segmentation is another crucial preprocessing step, involving 
the selection of the region of interest (ROI) from the image—in this case, the skin 
lesion. Accurate segmentation focuses analysis on the lesion and removes irrele-
vant background information. This topic is well-researched, and researchers often 
utilize large pretrained models. 

For instance, Himel et al. (2024) [38] used Meta’s Segment Anything Model 
[59] to perform segmentation on skin cancer images from the HAM10000 dataset. 
They then used the segmented images to pass only the ROI to feature extraction 
and classification models, achieving 96% accuracy using Google’s Vision Trans-
former (ViT) [60]. This approach demonstrates the effectiveness of combining 
advanced segmentation models with powerful classification architectures. 

TRAINING AND OPTIMIZATION 

Model training and optimization are pivotal in developing robust DL models for 
skin cancer classification. These processes involve selecting suitable architec-
tures, optimizing learning algorithms, fine-tuning hyperparameters, and employ-
ing strategies to enhance model performance while addressing overfitting. 

Transfer Learning. Transfer learning is extensively utilized in medical im-
age analysis due to the scarcity of labeled datasets [11]. By leveraging models 
pre-trained on large-scale datasets like ImageNet, researchers can fine-tune these 
models for specific tasks such as skin cancer classification [4]. This approach not 
only accelerates convergence but also often yields superior performance com-
pared to training models from scratch. 

In skin cancer classification, the data available is limited for many reasons. 
Therefore, usage of pretrained models is popular approach. Ali et al. (2021) [41], 
while developing a custom NN for skin cancer classification, applied transfer 
learning to the task with pre trained ResNet [61], AlexNet [62], VGG-16 [63], 
DenseNet [64] and MobileNet [65] achieving top accuracy of 86.09. Another ex-
ample is using ViT in [60] with 0.96 accuracy result. 
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Optimization Techniques. Learning Rate Scheduling. Adjusting the learn-
ing rate during training can significantly influence model convergence. Tech-
niques such as Step Decay, Exponential Decay, and more advanced methods like 
Cyclical Learning Rates and Warm Restarts are employed to optimize training 
efficiency [66, 67]. 

Optimizers. Selecting an appropriate optimization algorithm is crucial for 
training deep neural networks. Optimizers like Stochastic Gradient Descent 
(SGD) with momentum, Adam, and RMSProp are widely used. Adaptive opti-
mizers like Adam combine the advantages of AdaGrad and RMSProp, providing 
efficient training for deep models [68]. In skin cancer classification tasks, Adam 
is often preferred for its ability to handle sparse gradients and noisy data (for in-
stance in [69]). 

Regularization Methods. Regularization techniques prevent overfitting by 
adding constraints to the model. L1 and L2 regularization add penalties to the loss 
function based on the magnitude of weights. Dropout randomly deactivates neu-
rons during training, reducing interdependent learning among neurons. Batch 
normalization normalizes layer inputs, accelerating training and improving gener-
alization. 

It is also worth mentioning that on this stage is possible to address class im-
balance problem if it was not solved completely on data preprocessing stage. Le 
et al. (2020) used focal loss to train on imbalanced data of HAM10000 and re-
ceived 0.94 top accuracy with pretrained EfficientNetB1 [70]. 

Hyperparameter Tuning. Hyperparameters such as learning rate, batch size, 
network depth, and activation functions significantly impact model performance. 
Systematic methods like Grid Search and Random Search explore combinations 
of hyperparameters, while Bayesian Optimization offers a more efficient search 
by modeling the performance as a probabilistic function. 

Same time hyperparameter tuning can always be costly no matter the tech-
nique chosen. In [69] it was done on only 10% of training dataset which allowed 
to select appropriate values more efficiently. 

Early Stopping. Early stopping halts training when the validation loss stops 
decreasing, preventing the model from overfitting to the training data. This 
method is especially useful when training deep networks on limited datasets, as is 
common in medical imaging. 

Ensemble Learning. Ensembling combines predictions from multiple models 
to improve robustness and accuracy. Techniques like averaging, majority voting, or 
stacking can enhance performance in skin cancer classification. Ghosh et al (2024) 
[71] utilized ensemble learning with DCNN [72], Caps-Net [73] and ViT [60]. 

Non Supervised Learning. Semi-supervised learning. Semi-supervised 
learning combines a small amount of labeled data with a large amount of unla-
beled data during training. This approach is particularly beneficial in medical im-
aging, where labeling is expensive and time-consuming. Liu et al. (2020) em-
ployed a semi-supervised learning approach using a mean teacher model to 
leverage unlabeled skin lesion images, improving classification performance [7]. 
Techniques: 

 Pseudo-Labeling: Assigning labels to unlabeled data using the model’s 
own predictions and then retraining the model with this expanded dataset. This 
iterative process can improve performance but may propagate errors if the initial 
model is not accurate. 
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 Consistency Regularization: Encouraging the model to produce similar 
outputs when input images are perturbed or augmented, leveraging unlabeled data 
to learn robust features. 

 Mean Teacher Model: Utilizing a student-teacher framework where the 
teacher model generates targets for the student model, which learns from both 
labeled and unlabeled data. A noisy stutent algorithm was successfully used in 
ISIC Kaggle competition in melanoma classification challenge [74]. 

 Graph-Based Methods: Modeling data as graphs where nodes represent 
samples and edges represent similarities, propagating labels through the graph to 
infer labels for unlabeled data. 

Self-Supervised Learning. Self-supervised learning is a form of unsupervised 
learning where the model learns representations by solving pretext tasks created 
from unlabeled data. This approach is gaining traction in medical imaging. 
Chaitanya et al. (2020) showed that self-supervised learning on unlabeled medical 
images significantly improves model performance on downstream tasks with lim-
ited labeled data [75]. Techniques: 

 Contrastive Learning: Learning representations by maximizing agree-
ment between differently augmented views of the same data sample. The key idea 
is to develop a non-trivial network that preserves similar semantic structure for 
two (somewhat modified) versions of the same image and keeps two different 
images distinguishable [76]. Models like SimCLR have been adapted for medical 
images to learn robust features from unlabeled data [77]. 

 Pretext Tasks: Designing tasks such as predicting image rotations, solv-
ing jigsaw puzzles, or reconstructing distorted images to force the model to learn 
meaningful features. Haggerty and Chandra (2024) showed that models pre-
trained using SSL (Barlow Twins) significantly outperformed those pre-trained 
with SL on ImageNet in scenarios with limited labeled data specifically using 
skin cancer images. Moreover, by applying additional SSL pre-training on 
smaller, task-specific datasets (like skin lesion images), SL-pre-trained models 
could achieve performance equivalent to SSL models. This demonstrates that 
even minimal further SSL pre-training can be as effective as extensive pre-
training on large datasets [78]. 

EVALUATION AND VALIDATION 

Next important step in the DL pipeline is assessing the model’s effectiveness. It 
involves measuring the model’s performance on previously unseen data. Testing 
dataset is distinct from the validation dataset used during training. The validation 
dataset helps evaluate the model’s progress and detect overfitting, enabling tech-
niques like early stopping to be applied. 

To accurately identify model quality, an appropriate evaluation strategy and 
metrics must be chosen. For instance, when working with relatively small training 
and testing datasets, it’s crucial to focus on validating whether observed im-
provements stem from the new approach rather than statistical noise. 

Selecting suitable metrics is equally important. In medical diagnostics, for 
example, both type I and type II errors carry significant consequences. However, 
it is generally considered “better” to classify a healthy patient as sick than to miss 
diagnosing an ill patient. Moreover, medical datasets, such as those related to skin 
cancer, are often highly imbalanced. In such cases, relying solely on accuracy as 
the primary metric can be misleading. 
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Validation Strategies. Selecting fitting strategy involves deep understand-
ing of the data. It normally involves investigating the variability of model results 
so that we can distinguish a “luck” from “an actual improvement”. However, in 
medical imaging, datasets are often limited in size, making this method suscepti-
ble to high variance in performance estimates. 

Cross-Validation. K-fold cross-validation (CV) divides the dataset into k 
subsets (folds). The model is trained on k-1 folds and validated on the remaining 
fold, a process repeated k times. The results are averaged to produce a perform-
ance estimate [79]. 

Stratified K-fold ensures that each fold maintains the same class distribu-
tion as the original dataset, which is crucial for imbalanced datasets common in 
skin cancer classification. Mahesh et al. (2023) employed stratified K-Fold CV to 
handle class imbalance problem in [80]. 

Nested cross-validation addresses the bias in performance estimation due to 
hyperparameter tuning by having an inner loop for model selection and an outer 
loop for model assessment. 

External validation. This approach involves testing the model on entirely in-
dependent datasets from different institutions or populations. This approach pro-
vides a robust assessment of the model’s generalizability [7]. Brinker et al. (2019) 
performed an external validation of a DL model for melanoma detection across 
different populations, emphasizing the necessity of external validation for assess-
ing generalizability [81]. 

Evaluation Metrics. Accuracy measures the proportion of correct predic-
tions but can be misleading with imbalanced datasets. Precision shows how many 
identified class samples were identified correctly. Recall (Sensitivity) is how 
many samples of a class the model was able to identify. Specificity measures the 
proportion of true negatives among all actual negatives 

F1-Score is harmonic mean of precision and recall: 
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Balanced accuracy accounts for class imbalance by averaging the recall ob-
tained on each class: 
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These metrics provide a balanced view of performance, especially important 
in medical diagnosis where false negatives and false positives have different im-
plications. They are recommended to be used together to get a different perspec-
tives in performance. 

Another set of effective metrics is Receiver Operating Characteristic (ROC) 
Curve and Area Under the Curve (AUC). Receiver Operating Characteristic is a 
graph with a y-axis representing Sensitivity and an x-axis representing 1 – Speci-
ficity. It represents relation of classification threshold and correctly classified 
samples. In order to easily compare different models AUC is employed — an area 
under ROC Curve. 

Han et al. (2020) utilized ensemble learning and evaluated their model using 
ROC-AUC, precision-recall curves, and conducted statistical significance testing 
to demonstrate improvements over previous methods [82].  
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OPPORTUNITIES FOR INNOVATION 

In the domain of DL-based skin cancer classification, there are several promising 
avenues for innovation that can significantly enhance diagnostic accuracy, patient 
outcomes, and system scalability. As the field continues to mature, the integration 
of cutting-edge technologies can address existing challenges, optimize model per-
formance, and broaden access to dermatological diagnostics. 

Multimodal Data Integration. Integrating clinical data (e.g., patient demo-
graphics, lesion history, and genetic markers) with imaging data has the potential 
to improve diagnostic accuracy. While current models primarily rely on dermo-
scopic images, including non-visual patient information can provide additional 
context, leading to more accurate predictions. For instance, factors like age, lesion 
location, and personal/family history of skin cancer are crucial in assessing mela-
noma risk. Models that combine imaging with clinical data have demonstrated 
improved sensitivity and specificity, particularly for complex cases [83]. Moldo-
vanu et al. (2021) used surface fractal dimensions and statistical color cluster fea-
tures to improve model quality. Future research should focus on developing archi-
tectures capable of effectively fusing diverse data types. Nikitin et al. utilised 
fractal dimension with ViT focusing on different ways of integration of the metric 
[84].  Future research should focus on developing architectures capable of effec-
tively fusing diverse data types. 

Explainable AI. Building trust in AI-driven diagnostics is essential for clini-
cal adoption. Techniques like Gradient-weighted Class Activation Mapping 
(Grad-CAM) [85] and Layer-wise Relevance Propagation (LRP) [86] offer ex-
plainability by highlighting regions in dermoscopic images that contributed to the 
model’s decision. These visual explanations can help clinicians understand the 
model’s reasoning, enabling them to verify the output and diagnose more confi-
dently. Explainable AI can also aid in identifying potential biases in the model, 
particularly concerning underrepresented skin tones, thereby addressing dispari-
ties in diagnostic outcomes. Future work should explore enhancing the interpret-
ability of DL models while maintaining high classification accuracy, especially in 
high-stakes settings like oncology. 

Edge Computing. Deploying lightweight DL models on edge devices, such 
as smartphones, can facilitate real-time skin cancer detection, especially in re-
source-constrained settings. Advances in model optimization, such as pruning, 
quantization, and using architectures like MobileNet and EfficientNet, can reduce 
the computational load while maintaining accuracy. This is particularly relevant 
for underserved regions where access to dermatologists is limited. Edge-based AI 
systems can provide preliminary assessments, encouraging users to seek medical 
consultation if a lesion is flagged as suspicious. Research in this area should pri-
oritize developing robust, efficient models that can handle diverse image quality 
and environmental conditions typical of mobile device usage. 

GUIDANCE FOR EMERGING RESEARCHERS 

The field of DL for skin cancer classification is both challenging and rewarding, 
offering ample opportunities for innovation. However, newcomers to the field 
may face a steep learning curve due to the complexity of data, algorithms, and 
clinical considerations. Here are some practical tips for emerging researchers to 
navigate this evolving landscape: 
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Guidance for Emerging Researchers. The field of DL for skin cancer clas-
sification is both challenging and rewarding, offering ample opportunities for in-
novation. However, newcomers to the field may face a steep learning curve due to 
the complexity of data, algorithms, and clinical considerations. Here are some 
practical tips for emerging researchers to navigate this evolving landscape: 

1. Focus on Data Quality and Preprocessing. One of the biggest hurdles 
in dermatological AI research is access to high-quality, annotated datasets. Begin 
by familiarizing yourself with widely used datasets like ISIC and HAM10000. 
Pay special attention to data preprocessing, including normalization, augmenta-
tion, and segmentation techniques, to optimize model performance. Addressing 
challenges like class imbalance and image noise is crucial for achieving reliable 
results. However, the real experiments to achieve top metrics results must be con-
ducted on larger data since it is available — as of now ISIC Archive includes 
more than 400,000 images available to use. 

2. Start with Transfer Learning and Fine-Tuning. Given the limited 
availability of labeled medical data (ISIC Archive is not nearly as big as Ima-
geNet), leveraging transfer learning from pre-trained models on large-scale data-
sets like ImageNet can accelerate progress. Fine-tuning these models on skin le-
sion datasets can yield competitive results with relatively less training time. 
Explore architectures such as ResNet, EfficientNet, and ViT to identify what 
works best for your specific use case. Also, empirical results show that ensemble 
models do great in the task. 

3. Embrace Explainability from the Start. Building interpretability into 
your models is essential, especially in healthcare applications where clinicians 
require transparent and understandable outputs. Experiment with tools like Grad-
CAM and SHAP [87] to visualize your model’s decision-making process. Priori-
tizing explainability will not only help you gain the trust of the medical commu-
nity but also ensure that your models can be safely deployed in clinical settings. 

4. Keep Ethics and Privacy at the Forefront. When dealing with sensitive 
medical data, ethical considerations and compliance with regulations like GDPR 
are paramount. Consider approaches like federated learning and differential pri-
vacy to ensure patient confidentiality. Being aware of these considerations early 
on will help you design ethically responsible research projects that can be more 
easily translated into real-world applications. 

5. Stay Updated on Emerging Trends. The field of AI in healthcare is rap-
idly evolving, with new techniques like self-supervised learning, multimodal 
models, and quantum ML showing potential. Regularly reviewing the latest re-
search, participating in conferences, and engaging with collaborative research 
communities like the ISIC Challenge can keep you at the forefront of the field. 
Additionally, exploring adjacent fields like personalized medicine and bioinfor-
matics can open up interdisciplinary opportunities. 

By focusing on these areas, emerging researchers can build a strong foundation 
and contribute meaningfully to the development of AI-driven skin cancer diagnostics. 

CONCLUSION 

DL has revolutionized the field of skin cancer diagnostics, offering tools that can 
potentially match, or even surpass, dermatologist-level performance. However, 
the journey from research to clinical application is fraught with challenges. Our 
analysis highlights the importance of high-quality data, rigorous preprocessing, 
and robust model evaluation in developing reliable diagnostic systems. Address-
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ing issues like data privacy, class imbalance, and underrepresentation of diverse 
skin tones remains critical to ensuring equitable healthcare outcomes. 

The integration of clinical metadata with imaging data, along with techniques 
such as federated learning and edge computing, presents promising avenues to 
enhance model performance and broaden access to diagnostics, particularly in 
resource-constrained regions. Additionally, incorporating explainable AI methodologies 
can help gain the trust of clinicians, paving the way for real-world adoption. 

For emerging researchers, focusing on ethical considerations, leveraging 
transfer learning, and embracing advancements in multimodal integration are vital 
steps toward impactful contributions in this domain. As AI continues to evolve, 
its role in skin cancer diagnostics will likely expand, enabling more accurate, ac-
cessible, and personalized care. Future research should aim at bridging the gap 
between technological capabilities and clinical needs, ultimately transforming the 
landscape of dermatological diagnostics and improving patient outcomes. 
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ПОДОЛАННЯ ВИКЛИКІВ У ГЛИБОКОМУ НАВЧАННІ ДЛЯ ВИЯВЛЕННЯ 
РАКУ ШКІРИ / В.О. Нікітін, В.Я. Данилов 

Анотація. Рак шкіри є одним із найпоширеніших злоякісних новоутворень у 
світі. Раннє виявлення є критичним фактором зниження рівня смертності. Це 
підкреслює необхідність доступних систем комп'ютерної діагностики. Нещо-
давні досягнення в глибокому навчанні показали великі перспективи у вирі-
шенні цієї проблеми. Незважаючи на цей прогрес у галузі машинного навчан-
ня, дослідники стикаються із численними перешкодами, коли йдеться про 
класифікацію раку шкіри. Розглянуто сучасний стан діагностики раку шкіри на 
основі глибокого навчання, критичні аспекти розроблення системи, включно 
з попереднім обробленням даних, навчанням моделей та оцінкою продуктив-
ності. Крім того, висвітлюються можливості для інновацій, які можуть значно 
просунути цю галузь. Надаючи вичерпний огляд, стаття має на меті допомогти 
дослідникам та практикам в оптимізації моделей глибокого навчання, усуненні 
існуючих обмежень та дослідженні нових тенденцій для підвищення точності 
та доступності діагностики. 

Ключові слова: рак шкіри, глибоке навчання, класифікація, трансформатори, 
CNN, GAN, попереднє оброблення даних, доповнення даних. 

 


