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DETECTING UNSAFE BEHAVIOR IN NEURAL NETWORK 

IMITATION POLICIES FOR CAREGIVING ROBOTICS 

A. TYTARENKO 

Abstract. This paper explores the application of imitation learning in caregiving robot-
ics, aiming at addressing the increasing demand for automated assistance in caring for the 
elderly and disabled. While leveraging advancements in deep learning and control algo-
rithms, the study focuses on training neural network policies using offline demon-
strations. A key challenge addressed is the “Policy Stopping” problem, which is cru-
cial for enhancing safety in imitation learning-based policies, particularly diffusion 
policies. Novel solutions proposed include ensemble predictors and adaptations of 
the normalizing flow-based algorithm for early anomaly detection. Comparative 
evaluations against anomaly detection methods like VAE and Tran-AD demonstrate 
superior performance on assistive robotics benchmarks. The paper concludes by dis-
cussing further research in integrating safety models into policy training, which is 
crucial for the reliable deployment of neural network policies in caregiving robotics. 

Keywords: assistive robotics, reinforcement learning, diffusion models, imitation 
learning, anomaly detection. 

INTRODUCTION 

In recent years the fields of robotics and AI attracted lots of interest. The ad-
vances in deep learning, robotics hardware, deep reinforcement learning, and imi-
tation learning made it possible to solve complex control problems by training a 
neural network policy from mere hundreds of demonstrations. 

In this paper caregiving robotics is considered. Given the growing numbers 
of elderly and disabled people who need daily physical care [1; 2], the importance 
of automation rapidly increases. Caregiving (or assistive) robotics has a promise 
of addressing this problem, especially in the light of advances in control 
algorithms and hardware. 

As in most human-robot interaction scenarios, one of the biggest concerns in 
caregiving control algorithms is safety. This concern is especially important with 
neural network-based policies, which lack interpretability and are known to 
become unstable on out-of-distribution data [3]. 

For the case of imitation learning, this problem is visualized on Fig. 1. 

Fig. 1. Out-of-distribution data may lead to failures of a policy 
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There are 4 episodes: A, B, C, D visualized as trajectories from an initial 
position marked as X to goal region. A and C are present in dataset. B is not 
present, but since it does not differ much from A and C, the algorithm is able to 
generalize. The episode D, however, is significantly different, and thus, a policy 
makes unexpected wrong decisions, failing the task. 

The progress in the field is nevertheless vast. [4] proposes a method for 
robotic arm for assistive manipulation tasks. It is a learning-based system, capable 
of learning from demonstration, based on Dynamic Movement Primitives (DMP) 
[5]. DMP is a vast framework that includes many instances. Although those 
methods give a potential for lifelong/incremental learning, they also rely careful 
modelling and are more difficult to implement and deploy. 

Paper [6] introduced simulation software for assistive manipulation tasks, 
named AssistiveGym. It comes with multiple predefined tasks (feeding, drinking, 
arm manipulation, etc.) and robots (Jaco, PR1, etc.) to pick. For the study, this 
simulator is chosen for its versatility, simplicity, and speed. The simulator also 
comes with a Proximal Policy Optimization-based (PPO, [7; 8]) baseline. In this 
work, an imitation learning-based approach is used for training a neural network 
policy. Imitation learning [9–11] allows to avoid the necessity of learning from 
interaction, by instead leveraging the offline data (demonstrations) collected using 
an existing policy or via teleoperation. 

The uncertainty estimation problem for Reinforcement Learning algorithms 
is studied in [12]. Although applied to a different task, the authors show that the 
uncertainty can be estimated using the log-likelihood and the variance of the 
model. The problem is, DDPMs in general, and Diffusion Policy specifically, is a 
generative model, for which calculating a likelihood for the generated plan is 
difficult [13], making the proposed approach hardly applicable for the considered 
problem. Other methods include [14–17]. 

In the following sections the “Policy Stopping problem” is studied and 
solutions are proposed. These solutions are compared to the application of out-of-
box anomaly detection and uncertainty detection methods, proved to be successful 
in other domains. A system with a safety model and an imitation policy is 
developed and demonstrated. Lastly, the paper concludes with the discussion of 
the results and further research. 

PRELIMINARIES 

Markov Decision Process (MDP) is a collection ),,,( TrAS  with S  — state 

space, A  — action space, ),( asr – reward function and ),|( 1 ttt assPT   — dy-
namics. In this paper the reward is not assumed to be defined for full trajectories, 
classifying them as either “success” or “failure”. 

Reinforcement Learning (RL) algorithms optimize a policy  , which max-
imizes the expected total reward of the MDP: 


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where  is a trajectory ),...,,,( 1100 Tsasas  sampled by applying a policy  . 

In offline setting (offline RL) an access to environment for collecting more 
interactions is assumed to be absent, and the whole training is conducted using 
only pre-collected demonstrations. 

Diffusion Policy is essentially a Denoising Diffusion Probabilistic Model 
(DDPM) which models a distribution )|( OAp , where O  is a subset of prior ob-
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servations, and A  is a limited sequence of further actions, i.e. a short-horizon 
plan. 

Normalizing flow-based methods [18] estimate the data likelihood 
explicitly, by using a reversible block of various kinds. A trained network maps 

the input data x  to latent space Z , such that the inverse mapping ))((1 xff   is 
trivially computable. 

METHOD 

Data collection. In this work imitation learning techniques are used to train a 
neural network policy. Imitation learning methods as a rule require pre-recorded 
trajectories, e.g. a dataset with sequences of a form: 

 },...,1,),...,,,{( 1100 NisasasD iT  . 

Here N  — is the number of trajectories and T  — is a length of a trajectory. 
For collecting the trajectories, two methods are used — teleoperation and online 
reinforcement learning algorithms.  

Teleoperation is a fairly difficult task when it comes to robotic arm 
manipulation problems, especially in simulation. A keyboard-based teleoperation 
feature from the original AssistiveGym implementation is adapted for the task. 
The modified version is available via GitHub [19]. 

Online reinforcement learning algorithms allow training a policy neural 
network by interacting with an environment. They are usually way less sample-
efficient, i.e. it takes much more data and training steps to learn a useful 
behaviour. Nevertheless, it is convenient in case of AssistiveGym, since some 
tasks are very difficult to teleoperate. Proximal Policy Optimization [7] algorithm 
is used, which is a well-established baseline Reinforcement Learning method, to 
collect useful trajectories for some of the tasks. 

Diffusion Policy for Assistive Robotics. Recent advances brought much 
more efficient imitation learning methods, such as Diffusion Policy [10] and Ac-
tion Chunk Transformer [20]. Diffusion Policy, for instance, allows to train a 
relatively small neural network policy from up to 200–300 demonstrations in 
some cases [10]. 

Diffusion Policy fits a network capable of producing a plan of actions A  
from )|( SAP  without explicitly learning it. More precisely, 

 ),,...,( kTk ssS
O   ),,...,,...,(

AO TkkTk aaaA   

where k  is a current time step, AT  — action plan horizon, and OT  — state (ob-

servation) horizon. In this work, S  is a concatenation of previous states, each of 

which is represented as a vector of real numbers, i.e. SN
ts  . In the current 

study SN  is a relatively small number (<100), although the method allows work-
ing with larger-dimensional state spaces. This description also applies to the ac-

tion plan A : aN
ta  . 

The problem, however, is that it is difficult to compute a likelihood of a sample 
given a model only, which means that there is only a short-horizon plan A without 
any additional information. 
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Although the method is known to be sample-efficient, it still highly depends 
on the quality of the dataset, i.e. state-space coverage, trajectory optimality, etc. 
See Fig. 1. 

Therefore, there are almost none guarantees that a deployed robotic policy 
won’t fail in unexpected ways, potentially damaging the hardware. Moreover, 
since the Caregiving Robotics deals with human-robot interaction, this may make 
the robot dangerous to a human, which is a critical in this domain. 

Policy stopping problem. In this study approaches to the “Policy Stopping” 
problem are proposed and compared. In it, an algorithm must decide whether a 
policy execution must be stopped immediately. This problem can be also viewed 
as an early anomaly detection problem. However, there is one important differ-
ence. The stopping algorithm must be trained on offline data, generated by a be-
havioural policy (a human demonstrator, a scripted policy, arbitrary neural net-
work policy, or a mix), but tested on a data, generated by a different policy 
trained on that data (e.g. imitation learning algorithm). 

The key difference from traditional unsupervised anomaly detection is that 
an algorithm is conditioned on a dataset, generated by a distribution different 
from the test one. Therefore, such algorithm must balance the similarity of test 
trajectory and train trajectories, distinguishing between a good plan executed suc-
cessfully but in unusual way and a bad plan that ends up in failure. 

State-prediction approach. The first approach considered is inspired by 
MBPO [14] and widely used in Reinforcement Learning algorithms for different 
purposes [21–23]. This approach uses a “disagreement” of an ensemble of next 
state prediction neural networks. The idea is that the next state prediction will be 
accurate and won’t vary much between networks in the ensemble if the input is 
in-distribution (familiar to the model). At the same time, a state-action pair may 
not be known. The reason may be that it was not present in a dataset or that a da-
taset does not contain enough data for a predictor to generalize successfully to this 
state-action pair. Then, the next state predictors will “disagree”, which can be 
measured as a variance of some kind. 

Based on that principle, a network is trained, approximating a function 

 ,)|( SASf   

which predicts a vector of outT  future states. 

For training, inputs and outputs are sampled from a collection of trajectories 
and a neural network is fit in a simple supervised way, minimizing the MSE 
(Mean Squared Error) objective: 

 2
2||),(||),,,( SASfSASLMSE   . 

Sampling is executed in a following way: 

 ,~),...,( 0 demonT Dss   },,...,{~ kTkk    ),,...,( kTk ssS
in  

 ),,...,( kTk aaA
in   ),,...,( 1 outTkk ssS   

An ensemble of K  models is trained, by initializing and fitting them inde-
pendently on the same data. For estimating the level of uncertainty, a standard 
deviation between state predictions is computed by the following formula: 
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where i ( Ki ..1 ) — parameters of neural networks in an ensemble. 

After computing the uncertainty level ESPU , an algorithm compares it to a 
manually tuned threshold and returns a decision for whether to stop an episode or 
not. See the Pseudocode 1 for details. 

Pseudocode 1. Training an ensemble state prediction model. 
1. Input: Dataset demonD . 

2. Initialize hyperparameters KTT outin ,, .  

3. For EN  epochs: 
4. For Kj ..1 : 

5. Sample SAS ,, . 
6. Compute the MSE loss ),,,( SASLMSE . 

7. Compute the gradients w.r.t. j , update the weights j . 

8. End for. 
9. End for. 
10. Return: K ...1 . 

The considered approach follows [14] with a difference that the input to the 
state prediction function is not necessarily a single state-action pair, but a chunk, 
or an entire sub-trajectory. Although excessive due to the assumed Markovianess 
of the MDP, this allows to incorporate correlations between earlier states and de-
cisions made by an agent, such the resulting neural network ensemble shall dis-
agree when there are longer-term non-immediate anomalies in entire sub-
trajectories and not only a single state-action pair. 

In other words, single state-action version computes ),( asU ESP , while the 

proposed one computes ),( ASU ESP . 

In this study a simple MLP (multi-layered perceptron) architecture is used 
for a single state-action version, and a CNN (convolutional neural network) is 
used for the proposed sub-trajectory version. 

Adapting anomaly detection methods based on normalizing flows. 
A promising approach in unsupervised anomaly detection is normalizing flows.  

In this paper, a method named MVT Flow [18] is considered. MVT Flow is 
designed for unsupervised anomaly detection in time series in a robotics domain. 
Using a convolutional neural network as a backbone, it is trained to estimate the 
likelihood of normal data. The anomaly score is then computed as a loss function 
of a test data w.r.t. the trained model. 

MVT Flow can’t be successfully applied to the presented problem out of 
box. Although [18] provides a method for credit assignment of elements of the 
series, it still requires a network to process the entire time series first. Thus, to 
adapt MVT Flow to early anomaly detection setting the following modification is 
proposed. 
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Masking augmentation and sample weighting. The anomaly detection 
method MVT-Flow is (i) unsupervised and (ii) assigns an anomaly score to the 
entire input sequence. Therefore, applying it to a not finished sequence may be 
problematic. The neural net directly maximizes the likelihood of training data, so 
a previously unseen sequence will get a low likelihood score and will be 
considered anomaly.  

First, unfinished sequences are added to the training data, by randomly 
choosing a sub-episode length and removing all following elements from the 
episode. The problem, however, is that the actual abnormal trajectory may start as 
a normal one with only minor differences. Resulting model does not distinguish 
between a beginning of a normal trajectory and a fully normal trajectory, where 
clearly the likelihood should be different. 

So, second, a sample weighting is introduced to compensate for that effect: 

 ,,max 0
minmax

min














 w
KK

KK
w  

where maxmin ,, KKK  are respectively a sub-episode length, a minimum sub-
episode length and a full episode length. 

Intuitively, the ratio under the square root is a value which is 0 when the 
sub-episode is minimal and 1 when the sub-episode is full. The square root is 
applied to smooth the weights, making the difference between the full episode and 
minimal one smaller. 

Full algorithm. Pseudocode 2. Training an early-detection MVT-Flow model. 
1. Input: Dataset demonD . 

2. Initialize hyperparameters .,,,, 0maxmin wKKNE  

3. For EN  epochs: 

4. Sample demonrr DAS ~, . 

5. Sample random sub-episode length }.,...,{~ maxmin KKK  
6. Compute masked data AS , : 

 ||...1, SiIS Ki
i   ,  ||...1, AiIA Ki

i    

7. Compute the MVT-Flow loss ),,( ASLMVT . 

8. Compute the sample weight: 













 0
minmax

min ,max w
KK

KK
w . 

9. Update weights: ),,(:   ASLw MVT . 
10. End for. 
11. End for. 
12. Return: weights  . 

EXPERIMENTAL VALIDATION 

In this section the results of the study on several benchmarks of Caregiving Ro-
botics are provided. All benchmarks are conducted using environments from the 
modified version of the AssistiveGym suit, available via GitHub [19]. 

A simulated Jaco robotic arm is used, the following assistive tasks are 
considered: Assistive Feeding (250 teleoperation deomnstrations), Assistive Bed 
Bathing (1000, PPO), Arm Manipulation (1000, PPO), and Scratch Itch (1000, PPO). 
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First, a policy network is trained using a diffusion policy algorithm on each 
collected dataset with trajectories. 

Next, on each dataset, the models of weighted-masked (WM) MVT-Flow, 
original MVT-Flow, ensemble state predictors (single state-action and sub-
trajectory based), Variational Autoencoder (VAE) and Tran-AD. 

Weighted-masked MVT-Flow is trained with 1min K , 200max K , 

,1.00 w  4108  , .85EN  Other hyperparameters are kept in sync with [18]. 
Ensemble state predictors with 5K . For single state-action version take 

1 outin TT , and for sub-trajectory based, take tTin  , 1outT . Here t  means 
that all observations and actions observed up to a moment t  are considered. 
Single state-action predictor is applied sequentially, and a maximum uncertainty 
score is taken as a resulting anomaly score. 

Variational Autoencoder has a small CNN backbone and KL  penalty is set to 1. 
The anomaly score is set to the value of reconstruction loss of the input sub-episode. 

For Tran-AD the window size is set to 20. For evaluation, a Tran-AD 
network is inferred on all windows contained within the sub-episode and the 
resulting anomaly score is set to maximum anomaly score of every window. 

Every other hyperparameter remains unchanged from the original papers. 
To evaluate the quality of the proposed models, two kinds of metrics are 

reported: AUROC and FPR@TPR95. The former one is defined as an area under 
the Receiver Operating Characteristic curve. The later one is defined as the False 
Positive Rate on a threshold corresponding to 0.95 True Positive Rate. Both are 
common metrics in anomaly detection literature [24]. 

However, since the goal is to evaluate the early anomaly detection property, 
the metrics are reported for partial trajectories of various maximum lengths, 
namely 10%, 20%, 30%, 50%, 75%, and 100% of the maximum episode length. 
Better metrics on smaller percentages correspond to better earlier detection ability 
of an evaluated method. 

Tables 1–5 contain metrics reported when evaluated of each assistive 
environment datasets. Note, that for AUROC larger is better, while for 
FPR@TPR95 lower is better. 

T a b l e  1 . Evaluation on Assistive Feeding 

Method Metric 10% 20% 30% 50% 75% 100% 

FPR@TPR95 0.81 0.73 0.77 0.76  0.58  0.34 
Single SP 

AUROC  0.79 0.80 0.79 0.81 0.90 0.92 
FPR@TPR95 0.70 0.76 0.73 0.45 0.18 0.001 

VAE 
AUROC 0.70 0.71 0.77 0.86 0.96 1.00 

FPR@TPR95 0.72 0.37 0.55 0.23 0.06 0.02 
MVT-Flow 

AUROC 0.70 0.80 0.80 0.94 0.98 0.99 
FPR@TPR95 0.74 0.74 0.73 0.63 0.64 0.40 

Tran-AD 
AUROC 0.65 0.70 0.69 0.79 0.89 0.92 

FPR@TPR95 0.51 0.63 0.60 0.33 0.07 0.001 
Sub-trajectory SP* 

AUROC 0.79 0.83 0.83 0.92 0.97 1.00 
FPR@TPR95 0.64 0.61 0.50 0.21 0.06 0.001 

WM MVT-Flow* 
AUROC 0.77 0.83 0.84 0.94 0.98 1.00 

Assistive feeding is a simpler task, so most normal trajectories have a rela-
tively short length. Therefore, it is expected that a good method gets maximum 
score on 100% of the environment length. 
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T a b l e  2 .  Evaluation on Arm Manipulation 
Method Metric 10% 20% 30% 50% 75% 100% 

FPR@TPR95 0.82 0.80 0.77 0.82  0.40  0.20 
Single SP 

AUROC 0.73 0.72 0.79 0.78 0.89 0.95 
FPR@TPR95 0.82 0.80 0.73 0.37 0.26 0.02 

VAE 
AUROC 0.82 0.80 0.77 0.87 0.92 0.99 

FPR@TPR95 0.84 0.76 0.43 0.16 0.08 0.01 
MVT-Flow 

AUROC 0.72 0.75 0.88 0.95 0.97 0.99 
FPR@TPR95 0.97 0.96 0.97 0.90 0.83 0.78 

Tran-AD 
AUROC 0.43 0.43 0.45 0.51 0.57 0.65 

FPR@TPR95 0.84 0.80 0.85 0.41 0.10 0.02 
Sub-trajectory SP* 

AUROC 0.72 0.74 0.68 0.88 0.96 0.99 
FPR@TPR95 0.72 0.71 0.67 0.16 0.07 0.03 

WM MVT-Flow* 
AUROC 0.88 0.88 0.89 0.96 0.98 0.99 

 

T a b l e  3 . Evaluation Assistive Bed Bathing 

Method Metric 10% 20% 30% 50% 75% 100% 
FPR@TPR95 0.88 0.91 0.94 0.95  0.90  0.87 

Single SP 
AUROC 0.79 0.65 0.66 0.64 0.66 0.67 

FPR@TPR95 0.84 0.79 0.79 0.76 0.54 0.85 
VAE 

AUROC 0.68 0.63 0.63 0.70 0.81 0.97 
FPR@TPR95 1.00 0.83 0.83 0.55 0.44 0.28 

MVT-Flow 
AUROC 0.40 0.66 0.71 0.77 0.82 0.82 

FPR@TPR95 1.00 0.88 1.00 0.94 0.89 0.89 
Tran-AD 

AUROC 0.50 0.53 0.51 0.51 0.52 0.54 
FPR@TPR95 0.88 0.87 0.80 0.82 0.72 0.001 

Sub-trajectory SP* 
AUROC 0.77 0.74 0.74 0.66 0.71 1.00 

FPR@TPR95 0.87 0.69 0.67 0.50 0.40 0.22 
WM MVT-Flow* 

AUROC 0.72 0.77 0.77 0.81 0.86 0.94 
 

Bed bathing dataset is challenging due to the low success rate of the 
demonstration policy. Therefore, the distribution of input trajectories may not 
cover most scenarios, limiting an imitation learning policy’s performance. 

T a b l e  4 . Scratch Itch 

Method Metric 10% 20% 30% 50% 75% 100% 

FPR@TPR95 0.84 0.89 0.79 0.73  0.70  0.56 
Single SP 

AUROC 0.60 0.63 0.66 0.69 0.80 0.82 
FPR@TPR95 0.95 0.89 0.84 0.77 0.29 0.17 

VAE 
AUROC 0.60 0.61 0.66 0.75 0.88 0.92 

FPR@TPR95 0.85 0.89 0.84 0.67 0.45 0.30 
MVT-Flow 

AUROC 0.56 0.65 0.70 0.75 0.84 0.90 
FPR@TPR95 0.72 0.60 0.70 0.81 0.67 0.55 

Tran-AD 
AUROC 0.77 0.79 0.75 0.71 0.79 0.83 

FPR@TPR95 0.88 0.84 0.82 0.68 0.38 0.07 
Sub-trajectory SP* 

AUROC 0.56 0.60 0.77 0.80 0.87 0.93 
FPR@TPR95 0.81 0.83 0.84 0.65 0.41 0.30 

WM MVT-Flow* 
AUROC 0.74 0.78 0.79 0.79 0.86 0.91 
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From Tables 1–4, on can make the following observations. 
First, Weighted-Masked MVT-Flow consistently outperforms raw MVT-

Flow. For higher % of maximum length the raw version usually performs on par 
with the proposed modification, which is expected. This is because anomalous 
episodes take 100% of maximum length time, while most normal episodes are up 
to 50–75% of time.  

Second, Sub-trajectory SP performs on par with WM MVT-Flow on simpler 
environments, such as Feeding. It also outperforms single step predictors, espe-
cially on larger time periods. 

Tran-AD models perform the worst on most datasets due to its windowed 
inputs. The only exception is Scratch Itch (Table 4). It is hypothesized that the 
reason for this is the smaller-scale nature of anomalies in the test trajectories. 

Now, a demonstration of a system with a diffusion policy deployed with a 
safety model is provided (see Fig. 2). In practice, a set of thresholds for each time 
period is selected, since the anomaly score for applied methods is non-decreasing. 

The lower part of the diagram shows a plot of the anomaly score (normal-
ized), and arrows matching the upper images with corresponding time steps. Most 
of the time, the score is low, since the arm performs usual moves. The end of the 
plot shows a spike in anomaly score, resulting in the system halt. The anomaly is 
that the arm drops food and spins itself in unusual way. In the remaining of this 
episode, the arm would twist itself dangerously, potentially damaging hardware. 

CONCLUSION 

In this paper a challenging “Policy Stopping problem” is introduced and studied. 
This problem is important for improving safety of imitation learning-based neural 
network policies, specifically diffusion policies. 

The solutions specific to the introduced problem are proposed: ensemble of 
sub-trajectory-based state predictors and a modification of a recent MVT-Flow 
algorithm for early anomaly detection.  

The algorithms are evaluated and compared against ablated original unmodi-
fied versions and known anomaly detection approaches, such as VAE and Tran-

Fig. 2. Demonstration of the proposed approach on the Assistive Feeding environment 
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AD. The proposed solutions are shown to be more suitable for the introduced 
problem and tend to outperform other methods on assistive robotics benchmarks. 
For the evaluation of early-detection capabilities the usual metrics have been 
adapted. Lastly, a system with a safety model and an imitation policy is developed 
and demonstrated. 

The interesting future work directions include integration of the proposed 
safety models to training of imitation policies (e.g. [21]), safe data collection for 
model finetuning, and adaptation of safety models to vision-based tasks. This may 
bring the safe and robust deployment of neural network policies, so important for 
caregiving robotics domain. 
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ВИЯВЛЕННЯ НЕБЕЗПЕЧНОЇ ПОВЕДІНКИ В ПОЛІТИКАХ ІМІТАЦІЇ 
НЕЙРОМЕРЕЖІ ДЛЯ РОБОТОТЕХНІКИ ДЛЯ ДОГЛЯДУ / А.М. Титаренко 

Анотація. Досліджено застосування навчання за імітацією в задачах робототе-
хніки для догляду, спрямоване на вирішення зростаючого попиту на автомати-
зовану допомогу в обслуговуванні літніх людей і людей з інвалідністю. На 
підставі досягнень у глибокому навчанні та керуванні дослідження зосередже-
но на навчанні стратегій, представлених нейронними мережами за допомогою 
попередньо зібраних демонстрацій. Однією з ключових проблем, яку вирішу-
ється, є проблема «зупинки стратегії», що є важливою для підвищення безпеки 
в стратегіях, заснованих на навчанні імітацією, таких як дифузійні стратегії. 
Пропонуються рішення проблеми на базі ансамблів прогнозів стану та адапта-
ції алгоритму на основі нормалізаційного потоку для виявлення аномалій на 
ранніх стадіях виконання. Порівняльний аналіз з методами виявлення анома-
лій, такими як VAE та Tran-AD, демонструє перевагу в ефективності методів у 
задачах робототехніки для догляду. Запропоновано подальші напрями дослі-
джень з інтеграції моделей безпеки в навчання нейромережевих стратегій, що 
є важливим для надійного впровадження нейромережевих рішень у робототе-
хніку для догляду за людьми. 

Ключові слова: допоміжна робототехніка, навчання з підкріпленням, дифу-
зійні моделі, навчання імітацією, виявлення аномалій. 


