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DETECTING UNSAFE BEHAVIOR IN NEURAL NETWORK
IMITATION POLICIES FOR CAREGIVING ROBOTICS

A. TYTARENKO

Abstract. This paper explores the application of imitation learning in caregiving robot-
ics, aiming at addressing the increasing demand for automated assistance in caring for the
elderly and disabled. While leveraging advancements in deep learning and control algo-
rithms, the study focuses on training neural network policies using offline demon-
strations. A key challenge addressed is the “Policy Stopping” problem, which is cru-
cial for enhancing safety in imitation learning-based policies, particularly diffusion
policies. Novel solutions proposed include ensemble predictors and adaptations of
the normalizing flow-based algorithm for early anomaly detection. Comparative
evaluations against anomaly detection methods like VAE and Tran-AD demonstrate
superior performance on assistive robotics benchmarks. The paper concludes by dis-
cussing further research in integrating safety models into policy training, which is
crucial for the reliable deployment of neural network policies in caregiving robotics.

Keywords: assistive robotics, reinforcement learning, diffusion models, imitation
learning, anomaly detection.

INTRODUCTION

In recent years the fields of robotics and Al attracted lots of interest. The ad-
vances in deep learning, robotics hardware, deep reinforcement learning, and imi-
tation learning made it possible to solve complex control problems by training a
neural network policy from mere hundreds of demonstrations.

In this paper caregiving robotics is considered. Given the growing numbers
of elderly and disabled people who need daily physical care [1; 2], the importance
of automation rapidly increases. Caregiving (or assistive) robotics has a promise
of addressing this problem, especially in the light of advances in control
algorithms and hardware.

As in most human-robot interaction scenarios, one of the biggest concerns in
caregiving control algorithms is safety. This concern is especially important with
neural network-based policies, which lack interpretability and are known to
become unstable on out-of-distribution data [3].

For the case of imitation learning, this problem is visualized on Fig. 1.
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Fig. 1. Out-of-distribution data may lead to failures of a policy
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There are 4 episodes: 4, B, C, D visualized as trajectories from an initial
position marked as X to goal region. 4 and C are present in dataset. B is not
present, but since it does not differ much from 4 and C, the algorithm is able to
generalize. The episode D, however, is significantly different, and thus, a policy
makes unexpected wrong decisions, failing the task.

The progress in the field is nevertheless vast. [4] proposes a method for
robotic arm for assistive manipulation tasks. It is a learning-based system, capable
of learning from demonstration, based on Dynamic Movement Primitives (DMP)
[5]. DMP is a vast framework that includes many instances. Although those
methods give a potential for lifelong/incremental learning, they also rely careful
modelling and are more difficult to implement and deploy.

Paper [6] introduced simulation software for assistive manipulation tasks,
named AssistiveGym. It comes with multiple predefined tasks (feeding, drinking,
arm manipulation, etc.) and robots (Jaco, PR1, etc.) to pick. For the study, this
simulator is chosen for its versatility, simplicity, and speed. The simulator also
comes with a Proximal Policy Optimization-based (PPO, [7; 8]) baseline. In this
work, an imitation learning-based approach is used for training a neural network
policy. Imitation learning [9—11] allows to avoid the necessity of learning from
interaction, by instead leveraging the offline data (demonstrations) collected using
an existing policy or via teleoperation.

The uncertainty estimation problem for Reinforcement Learning algorithms
is studied in [12]. Although applied to a different task, the authors show that the
uncertainty can be estimated using the log-likelihood and the variance of the
model. The problem is, DDPMs in general, and Diffusion Policy specifically, is a
generative model, for which calculating a likelihood for the generated plan is
difficult [13], making the proposed approach hardly applicable for the considered
problem. Other methods include [14-17].

In the following sections the “Policy Stopping problem” is studied and
solutions are proposed. These solutions are compared to the application of out-of-
box anomaly detection and uncertainty detection methods, proved to be successful
in other domains. A system with a safety model and an imitation policy is
developed and demonstrated. Lastly, the paper concludes with the discussion of
the results and further research.

PRELIMINARIES

Markov Decision Process (MDP) is a collection (S,4,r,7) with § — state
space, A — action space, r(s,a)— reward function and T = P(s,,, |s,,a,) — dy-
namics. In this paper the reward is not assumed to be defined for full trajectories,
classifying them as either “success” or “failure”.

Reinforcement Learning (RL) algorithms optimize a policy &, which max-
imizes the expected total reward of the MDP:

o0
*
n =argmax E__ Zyr(st, a,),
(=0

where tis a trajectory (s,a,5;,a;,...57) sampled by applying a policy = .

In offline setting (offline RL) an access to environment for collecting more
interactions is assumed to be absent, and the whole training is conducted using
only pre-collected demonstrations.

Diffusion Policy is essentially a Denoising Diffusion Probabilistic Model
(DDPM) which models a distribution p(A4|O), where O 1is a subset of prior ob-
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servations, and A is a limited sequence of further actions, i.e. a short-horizon
plan.

Normalizing flow-based methods [18] estimate the data likelihood
explicitly, by using a reversible block of various kinds. A trained network maps

the input data x to latent space Z , such that the inverse mapping f~'(f(x)) is
trivially computable.

METHOD

Data collection. In this work imitation learning techniques are used to train a
neural network policy. Imitation learning methods as a rule require pre-recorded
trajectories, e.g. a dataset with sequences of a form:

D= {(So,ao,sl,a],...ST)i, i= 1,,N} .

Here N — is the number of trajectories and 7 — is a length of a trajectory.
For collecting the trajectories, two methods are used — teleoperation and online
reinforcement learning algorithms.

Teleoperation is a fairly difficult task when it comes to robotic arm
manipulation problems, especially in simulation. A keyboard-based teleoperation
feature from the original AssistiveGym implementation is adapted for the task.
The modified version is available via GitHub [19].

Online reinforcement learning algorithms allow training a policy neural
network by interacting with an environment. They are usually way less sample-
efficient, i.e. it takes much more data and training steps to learn a useful
behaviour. Nevertheless, it is convenient in case of AssistiveGym, since some
tasks are very difficult to teleoperate. Proximal Policy Optimization [7] algorithm
is used, which is a well-established baseline Reinforcement Learning method, to
collect useful trajectories for some of the tasks.

Diffusion Policy for Assistive Robotics. Recent advances brought much
more efficient imitation learning methods, such as Diffusion Policy [10] and Ac-
tion Chunk Transformer [20]. Diffusion Policy, for instance, allows to train a
relatively small neural network policy from up to 200—300 demonstrations in
some cases [10].

Diffusion Policy fits a network capable of producing a plan of actions A4
from P(A4|S) without explicitly learning it. More precisely,

S = (Sk—TO ""’Sk)’ A = (ak_TO ,...,ak,...,ak+TA ),

where k is a current time step, 7, — action plan horizon, and 7, — state (ob-
servation) horizon. In this work, S is a concatenation of previous states, each of
which is represented as a vector of real numbers, i.e. s, € RS | In the current
study Ny is a relatively small number (<100), although the method allows work-
ing with larger-dimensional state spaces. This description also applies to the ac-
tionplan4: aq, € RVa

The problem, however, is that it is difficult to compute a likelihood of a sample
given a model only, which means that there is only a short-horizon plan A without
any additional information.
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Although the method is known to be sample-efficient, it still highly depends
on the quality of the dataset, i.e. state-space coverage, trajectory optimality, etc.
See Fig. 1.

Therefore, there are almost none guarantees that a deployed robotic policy
won’t fail in unexpected ways, potentially damaging the hardware. Moreover,
since the Caregiving Robotics deals with human-robot interaction, this may make
the robot dangerous to a human, which is a critical in this domain.

Policy stopping problem. In this study approaches to the “Policy Stopping”
problem are proposed and compared. In it, an algorithm must decide whether a
policy execution must be stopped immediately. This problem can be also viewed
as an early anomaly detection problem. However, there is one important differ-
ence. The stopping algorithm must be trained on offline data, generated by a be-
havioural policy (a human demonstrator, a scripted policy, arbitrary neural net-
work policy, or a mix), but tested on a data, generated by a different policy
trained on that data (e.g. imitation learning algorithm).

The key difference from traditional unsupervised anomaly detection is that
an algorithm is conditioned on a dataset, generated by a distribution different
from the test one. Therefore, such algorithm must balance the similarity of test
trajectory and train trajectories, distinguishing between a good plan executed suc-
cessfully but in unusual way and a bad plan that ends up in failure.

State-prediction approach. The first approach considered is inspired by
MBPO [14] and widely used in Reinforcement Learning algorithms for different
purposes [21-23]. This approach uses a “disagreement” of an ensemble of next
state prediction neural networks. The idea is that the next state prediction will be
accurate and won’t vary much between networks in the ensemble if the input is
in-distribution (familiar to the model). At the same time, a state-action pair may
not be known. The reason may be that it was not present in a dataset or that a da-
taset does not contain enough data for a predictor to generalize successfully to this
state-action pair. Then, the next state predictors will “disagree”, which can be
measured as a variance of some kind.

Based on that principle, a network is trained, approximating a function

f,(S| =5,

which predicts a vector of 7, future states.

ut

For training, inputs and outputs are sampled from a collection of trajectories
and a neural network is fit in a simple supervised way, minimizing the MSE
(Mean Squared Error) objective:

Lyse (S, 4,8",0) =l f,(S, )= S"[13.

Sampling is executed in a following way:

(50557) = Daemons k=~ {hses T=k}s S=(54_7. sersi),

A:(akam ,...,ak), S:(Sk+1""’Sk+T ),

out

An ensemble of K models is trained, by initializing and fitting them inde-
pendently on the same data. For estimating the level of uncertainty, a standard
deviation between state predictions is computed by the following formula:
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2
1 1
Ul(s,4)=—— (S, 4) —— (S, 4|,
(S, 4)=—— i:%:Kfq),( ) K}_ﬂzj{w )
Ugsp(S, )= Y.U'(S,4),

I=1.|S|N§
where ¢; (i =1..K ) — parameters of neural networks in an ensemble.

After computing the uncertainty level Uggp, an algorithm compares it to a
manually tuned threshold and returns a decision for whether to stop an episode or
not. See the Pseudocode 1 for details.

Pseudocode 1. Training an ensemble state prediction model.

Input: Dataset D, -

Initialize hyperparameters 7;,,7,,,,K .

in>*out»
For N epochs:
For j=1..K:
Sample S,4,S".
Compute the MSE loss Lz (S,4,S",¢).
Compute the gradients w.r.t. ¢ ;, update the weights ¢ ;.

End for.
. End for.
10.Return: ¢;...0x .

The considered approach follows [14] with a difference that the input to the
state prediction function is not necessarily a single state-action pair, but a chunk,
or an entire sub-trajectory. Although excessive due to the assumed Markovianess
of the MDP, this allows to incorporate correlations between earlier states and de-
cisions made by an agent, such the resulting neural network ensemble shall dis-
agree when there are longer-term non-immediate anomalies in entire sub-
trajectories and not only a single state-action pair.

In other words, single state-action version computes Uggp(s,a), while the

VX N U AW

proposed one computes U gsp (S, 4) .

In this study a simple MLP (multi-layered perceptron) architecture is used
for a single state-action version, and a CNN (convolutional neural network) is
used for the proposed sub-trajectory version.

Adapting anomaly detection methods based on normalizing flows.
A promising approach in unsupervised anomaly detection is normalizing flows.

In this paper, a method named MVT Flow [18] is considered. MVT Flow is
designed for unsupervised anomaly detection in time series in a robotics domain.
Using a convolutional neural network as a backbone, it is trained to estimate the
likelihood of normal data. The anomaly score is then computed as a loss function
of a test data w.r.t. the trained model.

MVT Flow can’t be successfully applied to the presented problem out of
box. Although [18] provides a method for credit assignment of elements of the
series, it still requires a network to process the entire time series first. Thus, to
adapt MVT Flow to early anomaly detection setting the following modification is
proposed.
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Masking augmentation and sample weighting. The anomaly detection
method MVT-Flow is (i) unsupervised and (ii) assigns an anomaly score to the
entire input sequence. Therefore, applying it to a not finished sequence may be
problematic. The neural net directly maximizes the likelihood of training data, so
a previously unseen sequence will get a low likelihood score and will be
considered anomaly.

First, unfinished sequences are added to the training data, by randomly
choosing a sub-episode length and removing all following elements from the
episode. The problem, however, is that the actual abnormal trajectory may start as
a normal one with only minor differences. Resulting model does not distinguish
between a beginning of a normal trajectory and a fully normal trajectory, where
clearly the likelihood should be different.

So, second, a sample weighting is introduced to compensate for that effect:

wemax| |K=Kmin |
Kmax _Kmin

where K, K., K,.x are respectively a sub-episode length, a minimum sub-

episode length and a full episode length.

Intuitively, the ratio under the square root is a value which is 0 when the
sub-episode is minimal and 1 when the sub-episode is full. The square root is
applied to smooth the weights, making the difference between the full episode and
minimal one smaller.

Full algorithm. Pseudocode 2. Training an early-detection MVT-Flow model.

1. Input: Dataset D, -

2. Initialize hyperparameters y, Nz, K in> Kmax»> Wo-

3. For N epochs:

4. Sample S,, 4, ~Djmon -

5. Sample random sub-episode length K ~ {K i1 o» Kinax | -
6.

Compute masked data S, 4 :
S =1 _g,i=1..|S|, A" =I_g,i=1..|A]|
7. Compute the MVT-Flow loss L;;7(S,4,6).

. K—-K_.
8. Compute the sample weight: w = max f—m‘“,wo .
Kmax - Kmin

9. Update weights: 0:=0—ywV 4L, (S,4,0).
10.End for.

11.End for.

12.Return: weights 0.

EXPERIMENTAL VALIDATION

In this section the results of the study on several benchmarks of Caregiving Ro-
botics are provided. All benchmarks are conducted using environments from the
modified version of the AssistiveGym suit, available via GitHub [19].

A simulated Jaco robotic arm is used, the following assistive tasks are
considered: Assistive Feeding (250 teleoperation deomnstrations), Assistive Bed
Bathing (1000, PPO), Arm Manipulation (1000, PPO), and Scratch Itch (1000, PPO).
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First, a policy network is trained using a diffusion policy algorithm on each
collected dataset with trajectories.

Next, on each dataset, the models of weighted-masked (WM) MVT-Flow,
original MVT-Flow, ensemble state predictors (single state-action and sub-
trajectory based), Variational Autoencoder (VAE) and Tran-AD.

Weighted-masked MVT-Flow is trained with K. ;, =1, K. =200,

wp =0.1, y=8- 1074, Ny =85. Other hyperparameters are kept in sync with [18].
Ensemble state predictors with K =5. For single state-action version take
T, =T,, =1, and for sub-trajectory based, take 7;, =¢, T,, =1. Here ¢t means

out in out
that all observations and actions observed up to a moment ¢ are considered.
Single state-action predictor is applied sequentially, and a maximum uncertainty
score is taken as a resulting anomaly score.

Variational Autoencoder has a small CNN backbone and KL penalty is set to 1.
The anomaly score is set to the value of reconstruction loss of the input sub-episode.

For Tran-AD the window size is set to 20. For evaluation, a Tran-AD
network is inferred on all windows contained within the sub-episode and the
resulting anomaly score is set to maximum anomaly score of every window.

Every other hyperparameter remains unchanged from the original papers.

To evaluate the quality of the proposed models, two kinds of metrics are
reported: AUROC and FPR@TPRO5. The former one is defined as an area under
the Receiver Operating Characteristic curve. The later one is defined as the False
Positive Rate on a threshold corresponding to 0.95 True Positive Rate. Both are
common metrics in anomaly detection literature [24].

However, since the goal is to evaluate the early anomaly detection property,
the metrics are reported for partial trajectories of various maximum lengths,
namely 10%, 20%, 30%, 50%, 75%, and 100% of the maximum episode length.
Better metrics on smaller percentages correspond to better earlier detection ability
of an evaluated method.

Tables 1-5 contain metrics reported when evaluated of each assistive
environment datasets. Note, that for AUROC larger is better, while for
FPR@TPROS5 lower is better.

Table 1. Evaluation on Assistive Feeding

Method Metric 10% | 20% | 30% | 50% | 75% | 100%

FPR@TPRY95 | 0.81 | 0.73 | 0.77 | 0.76 | 0.58 0.34

Single SP AUROC 079 | 080 | 0.79 | 0.81 | 0.90 | 092
VAE FPR@TPRY5 | 070 | 0.76 | 0.73 | 0.45 | 0.18 | 0.001
AUROC 070 | 071 | 0.77 | 0.86 | 096 | 1.00

FPR@TPRY5 | 072 | 037 | 055 | 023 | 0.06 | 0.02

MVT-Flow AUROC 070 | 0.80 | 0.80 | 0.94 & 0.98 | 0.99
TranAD FPR@TPRYS | 0.74 | 0.74 | 073 | 0.63 | 0.64 | 0.40

AUROC 0.65 | 0.70 | 0.69 | 0.79 | 0.89 | 0.92

FPR@TPRY5 | 0.51 | 0.63 | 0.60 | 0.33 | 0.07 | 0.001

- 1 *
Sub-trajectory SP AUROC | 079 | 0.83 | 0.83 | 0.92 | 0.97 | 1.00

FPR@TPRY95 | 0.64 | 0.61 | 0.50 | 0.21 | 0.06 | 0.001

_ *
WM MVT-Flow AUROC | 0.77 | 0.83 | 0.84 | 0.94 | 098 | 1.00

Assistive feeding is a simpler task, so most normal trajectories have a rela-
tively short length. Therefore, it is expected that a good method gets maximum
score on 100% of the environment length.

92 ISSN 1681-6048 System Research & Information Technologies, 2024, Ne 4



Detecting unsafe behavior in neural network imitation policies for caregiving robotics

Table 2. Evaluation on Arm Manipulation

Method Metric 10% | 20% | 30% | 50% | 75% |100%
. FPR@TPR95 | 0.82 | 0.80 | 0.77 | 0.82 | 040 | 0.20
Single SP
AUROC 073 | 072 | 079 | 0.78 | 089 | 0.95
VAE FPR@TPR9S | 0.82 | 0.80 | 0.73 | 037 | 026 | 0.02
AUROC 082 | 080 | 0.77 | 0.87 | 092 | 0.99
FPR@TPRYS | 084 | 0.76 | 0.43 | 0.16 | 0.08 | 0.01
MVT-Flow AUROC 072 | 075 | 0.88 | 0.95 | 0.97 | 0.99
TranAD FPR@TPR9S | 097 | 096 | 097 | 090 | 0.83 | 0.78
AUROC 043 | 043 | 045 | 051 | 057 | 0.65
. FPR@TPR9S | 0.84 | 0.80 | 0.85 | 0.41 | 0.10 | 0.02
_ *
Sub-trajectory SP AUROC 072 | 074 | 068 | 088 | 0.96 | 0.99
FPR@TPRY5 | 0.72 | 071 | 0.67 | 0.16 | 0.07 | 0.03
_ ES
WM MVT-Flow AUROC 0.88 | 0.88 @ 0.89 | 0.96 | 0.98 | 0.99
Table 3. Evaluation Assistive Bed Bathing
Method Metric 10% | 20% | 30% | 50% | 75% |100%
. FPR@TPR9S | 0.88 | 091 | 0.94 | 095 | 090 | 0.87
Single SP
AUROC 079 | 065 | 066 | 0.64 | 0.66 | 0.67
VAE FPR@TPR9S | 0.84 | 079 | 079 | 0.76 | 0.54 | 0.85
AUROC 068 | 063 | 063 | 070 | 081 | 0.97
FPR@TPR9S | 1.00 | 0.83 | 0.83 | 0.55 | 044 | 028
MVT-Flow AUROC 040 | 066 | 071 | 077 | 082 | 0.82
FPR@TPRYS | 1.00 | 0.88 | 1.00 | 094 | 089 | 0.89
Tran-AD AUROC 050 | 053 | 051 | 051 | 052 | 054
. FPR@TPR9S | 0.88 | 0.87 | 0.80 | 0.82 | 0.72 | 0.001
_ %
Sub-trajectory SP AUROC 0.77 | 074 | 074 | 066 | 071 | 1.00
FPR@TPR9S | 0.87 | 0.69 | 0.67 | 0.50 | 0.40 | 022
WM MVT-Flow*
ow AUROC 072 | 077 | 077 | 0.81 | 0.86 | 0.94

Bed bathing dataset is challenging due to the low success rate of the
demonstration policy. Therefore, the distribution of input trajectories may not
cover most scenarios, limiting an imitation learning policy’s performance.

Table 4. Scratch Itch

Method Metric 10% | 20% | 30% | 50% | 75% |100%
. FPR@TPR95 0.84 0.89 0.79 0.73 0.70 0.56
Single SP
AUROC 0.60 0.63 0.66 0.69 0.80 0.82
VAE FPR@TPR95 0.95 0.89 0.84 0.77 0.29 0.17
AUROC 0.60 0.61 0.66 0.75 0.88 0.92
FPR@TPR95 0.85 0.89 0.84 0.67 0.45 0.30
MVT-Flow AUROC 0.56 0.65 0.70 0.75 0.84 0.90
Tran-AD FPR@TPRY95 0.72 0.60 0.70 0.81 0.67 0.55
AUROC 0.77 0.79 0.75 0.71 0.79 0.83
. FPR@TPRI9S 0.88 0.84 0.82 0.68 0.38 0.07
_ *
Sub-trajectory SP AUROC 0.56 | 0.60 | 077 | 0.80 | 0.87 | 0.93
FPR@TPR95 0.81 0.83 0.84 0.65 0.41 0.30
WM MVT-Flow*
oW AUROC 0.74 0.78 0.79 0.79 0.86 0.91
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From Tables 1-4, on can make the following observations.

First, Weighted-Masked MVT-Flow consistently outperforms raw MVT-
Flow. For higher % of maximum length the raw version usually performs on par
with the proposed modification, which is expected. This is because anomalous
episodes take 100% of maximum length time, while most normal episodes are up
to 50-75% of time.

Second, Sub-trajectory SP performs on par with WM MVT-Flow on simpler
environments, such as Feeding. It also outperforms single step predictors, espe-
cially on larger time periods.

Tran-AD models perform the worst on most datasets due to its windowed
inputs. The only exception is Scratch Itch (Table 4). It is hypothesized that the
reason for this is the smaller-scale nature of anomalies in the test trajectories.

Now, a demonstration of a system with a diffusion policy deployed with a
safety model is provided (see Fig. 2). In practice, a set of thresholds for each time
period is selected, since the anomaly score for applied methods is non-decreasing.

anomaly
detected

—_—

o +— 1 - /safety_model/wm_mvt_flow e

Fig. 2. Demonstration of the proposed approach on the Assistive Feeding environment

The lower part of the diagram shows a plot of the anomaly score (normal-
ized), and arrows matching the upper images with corresponding time steps. Most
of the time, the score is low, since the arm performs usual moves. The end of the
plot shows a spike in anomaly score, resulting in the system halt. The anomaly is
that the arm drops food and spins itself in unusual way. In the remaining of this
episode, the arm would twist itself dangerously, potentially damaging hardware.

CONCLUSION

In this paper a challenging “Policy Stopping problem” is introduced and studied.
This problem is important for improving safety of imitation learning-based neural
network policies, specifically diffusion policies.

The solutions specific to the introduced problem are proposed: ensemble of
sub-trajectory-based state predictors and a modification of a recent MVT-Flow
algorithm for early anomaly detection.

The algorithms are evaluated and compared against ablated original unmodi-
fied versions and known anomaly detection approaches, such as VAE and Tran-
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AD. The proposed solutions are shown to be more suitable for the introduced
problem and tend to outperform other methods on assistive robotics benchmarks.
For the evaluation of early-detection capabilities the usual metrics have been
adapted. Lastly, a system with a safety model and an imitation policy is developed
and demonstrated.

The interesting future work directions include integration of the proposed
safety models to training of imitation policies (e.g. [21]), safe data collection for
model finetuning, and adaptation of safety models to vision-based tasks. This may
bring the safe and robust deployment of neural network policies, so important for
caregiving robotics domain.

REFERENCES

1. J. Broekens, M. Heerink, and H. Rosendal, “Assistive social robots in elderly care: A re-
view,” Gerontechnology, vol. 8, no. 2, pp. 94-103, 2009. doi: https://doi.org/10.4017/
£t.2009.08.02.002.00

2. D.M. Taylor, “Americans with disabilities: 2014,” US Census Bureau, pp. 1-32,2018.

3. Dan Hendrycks et al., “The many faces of robustness: A critical analysis of out-of-
distribution generalization,” Proceedings of the IEEE/CVF international conference
on computer vision, 2021. doi: 10.1109/ICCV48922.2021.00823

4. Clemente Lauretti et al., “Learning by demonstration for planning activities of daily
living in rehabilitation and assistive robotics,” IEEE Robotics and Automation Let-
ters, vol. 2, issue 3, pp. 13751382, 2017. doi: 10.1109/LRA.2017.2669369

5. Matteo Saveriano, Fares J. Abu-Dakka, Aljaz Kramberger, and Luka Peternel, “Dy-
namic movement primitives in robotics: A tutorial survey,” The International Jour-
nal of Robotics Research, vol. 42, issue 13, pp. 11331184, 2023.

6. Z. Erickson, V. Gangaram, A. Kapusta, C.K. Liu, and C.C. Kemp, “Assistive gym:
A physics simulation framework for assistive robotics,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 10169-10176.

7. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint, 2017. doi: https://doi.org/10.48550/arXiv.
1707.06347

8. Jakhotiya Yash, Iman Haque, “Improving Assistive Robotics with Deep Reinforce-
ment Learning,” arXiv preprint, 2022. doi: https://doi.org/10.48550/arXiv.2209.02160

9. Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi, “A survey
of imitation learning: Algorithms, recent developments, and challenges,” arXiv pre-
print, 2023. doi: https://doi.org/10.48550/arXiv.2309.02473

10. Chi Cheng et al., “Diffusion policy: Visuomotor policy learning via action diffu-
sion,” arXiv preprint, 2023. doi: https://doi.org/10.48550/arXiv.2303.04137

11. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” arXiv pre-
print, 2020. doi: https://doi.org/10.48550/arXiv.2006.11239

12. Vincent Mai, Mani Kaustubh, and Paull Liam, “Sample efficient deep reinforcement
learning via uncertainty estimation,” arXiv preprint, 2022. doi: https://doi.org/10.48550/
arXiv.2201.01666

13. Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole, “Score-based generative modeling through stochastic differ-
ential equations,” arXiv preprint, 2020. doi: https://doi.org/10.48550/arXiv.2011.13456

14. Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine, “When to trust your
model: Model-based policy optimization,” Advances in Neural Information Process-
ing Systems 32,2019. doi: 10.48550/arXiv.1906.08253

15. Shunan Guo, Zhuochen Jin, Qing Chen, David Gotz, Hongyuan Zha, and Nan Cao,
“Visual anomaly detection in event sequence data,” 2019 IEEE International Con-
ference on Big Data (Big Data). doi: 10.1109/BigData47090.2019.9005687

16. Diederik P. Kingma, Max Welling, “Auto-encoding variational bayes,” arXiv pre-
print, 2013. doi: https://doi.org/10.48550/arXiv.1312.6114

Cucmemni docnioxcenna ma ingpopmayivini mexnonoeii, 2024, Ne 4 95



A. Tytarenko

17. Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings, “TranAD: Deep trans-
former networks for anomaly detection in multivariate time series data,” arXiv pre-
print, 2022. doi: https://doi.org/10.48550/arXiv.2201.07284

18. Jan ThieB3 Brockmann, Marco Rudolph, Bodo Rosenhahn, and Bastian Wandt, “The
voraus-AD Dataset for Anomaly Detection in Robot Applications,” IEEE Transac-
tions on Robotics, 2023. doi: 10.1109/TR0O.2023.3332224

19. A. Tytarenko, Assistive Gym Fork. 2024. Accessed on June 19, 2024. [Online].
Available: https://github.com/titardrew/assistive-gym

20. Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn, “Learning fine-
grained bimanual manipulation with low-cost hardware,” arXiv preprint, 2023. doi:
https://doi.org/10.48550/arXiv.2304.13705

21. Tianhe Yu et al., “Mopo: Model-based offline policy optimization,” Advances in Neural
Information Processing Systems 33, pp. 14129—-14142, 2020. Available: https:// proceed-
ings.nips.cc/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf

22. Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims,
"MOReL: Model-based offline reinforcement learning,” Advances in Neural Information
Processing Systems 33, pp. 21810-21823, 2020. Available: https:/proceedings. neu-
rips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf

23. Laura Smith, Yunhao Cao, and Sergey Levine, “Grow your limits: Continuous Im-
provement with Real-World RL for Robotic Locomotion,” arXiv preprint, 2023. doi:
https://doi.org/10.48550/arXiv.2310.17634

24. Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li, “Energy-based out-of-
distribution detection,” Advances in Neural Information Processing Systems 33,
pp. 21464-21475, 2020. Available: https://proceedings.neurips.cc/paper/2020/file/
£5496252609c43eb8a3d147ab9b9c006-Paper.pdf

Received 11.07.2024

INFORMATION ON THE ARTICLE

Andrii M. Tytarenko, ORCID: 0000-0002-8265-642X, Educational and Research Insti-
tute for Applied System Analysis of the National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute”, Ukraine, e-mail: titarenkoan@gmail.com

BUSABJIEHHA HEBE3NEYHOI TOBEJAIHKA B TMOJITHKAX IMITAIII
HEHUPOMEPEXKI JJIS1 POBOTOTEXHIKHU JJISI AOTJIAAY / A.M. Tutaperko

AHoTamist. J[ociKeHo 3aCTOCYBaHHsI HAaBYAHHSI 32 IMITAIli€l0 B 3a/1a4aXx poOOTOTe-
XHIKH JUTsl IOTJIsiLY, CIPSIMOBAHE Ha BHPILICHHS 3pOCTAIOYOr0 MOMUTY Ha aBTOMATH-
30BaHy JOMOMOTY B OOCIyroByBaHHI JITHIX Jirongedl i jrogedt 3 imBamimaictio. Ha
MiJICTaBi IOCATHEHD Y TIIMOOKOMY HaBYaHHI Ta KePyBaHHI JOCIIHKEHHS 30CepeKe-
HO Ha HaBYAHHI CTpaTerii, MpeiCcTaBIeHNX HEHPOHHUMH MEPEXaMH 3a JOMIOMOT 00
MOTIEPeIHBO 3i0paHux JeMoHcTpamii. OnHie 3 KIF0YoBUX Mpo0ieM, Ky BHPILIy-
€ThCS, € IPOOJIEMa «3YIIMHKU CTPATErii», 110 € BAYKIMBOIO ISl [ JBUILCHHS Oe3MeKn
B CTpaTerisix, 3aCHOBAaHMX Ha HABYAHHI IMiTalli€lo, Takux sK Audy3iiiHi cTparerii.
IMpornoHyIoTECs pimeHHs npobiieMn Ha 6a3i aHcaMOJIiB IPOTHO3IB CTaHy Ta aJarnTa-
1il aNropuTMy Ha OCHOBI HOpPMai3alliHHOTO MOTOKY Ul BUSBJICHHS aHOMalid Ha
paHHiX cranisix BukoHaHHs. [[OpIBHSJIBHHUI aHANi3 3 METOAaMH BHUSIBJICHHS aHOMa-
niii, Takumu sik VAE ta Tran-AD, nemMoHCTpye nepeBary B epeKTHBHOCTI METO/IIB y
3a7adax POOOTOTEXHIKH U IOTIAAY. 3alpOIIOHOBAHO MOAAIBIII HANPSIMU JOCIHi-
IDKEHB 3 iHTerpamnii Mojenell 0e3nekn B HaBUaHHA HEHPOMEPEKEBHUX CTpATerii, mio
€ BaXJIMBUM [T HAJIIHHOTO BIPOBA/PKCHHSI HEHPOMEPEIKEBHUX PIllIeHb Y pobOTOTE-
XHIKY JUISL ZOTJISIY 32 JIFOJbMH.

KawouoBi cioBa: nonomixkHa poOOTOTEXHIKA, HABYAHHS 3 IiJKPIIUICHHIM, ITUQY-
31iiH1 MOIelIl, HaBYaHHS IMITAIl€0, BUSBICHHS aHOMAJIIi.
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