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CLASSICAL SPECIAL FUNCTIONS OF MATRIX ARGUMENTS

D.O. SHUTIAK, G.B. PODKOLZIN, V.G. BONDARENKO, Y.A. CHAPOVSKY

Abstract. This article focuses on a few of the most commonly used special func-
tions and their key properties and defines an analytical approach to building their
matrix-variate counterparts. To achieve this, we refrain from using any numerical
approximation algorithms and instead rely on properties of matrices, the matrix ex-
ponential, and the Jordan normal form for matrix representation. We focus on the
following functions: the Gamma function as an example of a univariate function
with a large number of properties and applications; the Beta function to highlight the
similarities and differences from adding a second variable to a matrix-variate func-
tion; and the Jacobi Theta function. We construct explicit function views and prove
a few key properties for these functions. In the comparison section, we highlight and
contrast other approaches that have been used in the past to tackle this problem.

Keywords: matrix, special function, matrix function, gamma function, beta func-
tion, Jacobi theta function, Jordan normal form.

INTRODUCTION

Data with matrix responses for each experiment are increasingly common in
modern statistical problems. For example, observations over a time period can be
viewed holistically as a matrix variable, labeling the rows and columns as time
and actual measurements respectively. Temporal and spatial data, multivariate
growth curve data, imaging data, and data from cross-sectional designs also gen-
erate matrix-valued responses. On the other hand, many of these phenomena are
still often built on generalized cases of classical problems, many of which are
solved, or at least interpreted or simplified, by special functions. Therefore, the
motivation of the study was to combine these two parts and to do so as generally
as possible analytically, without relying on a specific problem or purely numerical
methods. There were earlier studies on this topic, but they were aimed at either
generalizing a specific concept (Mitra S. 1970 [1]), or calculating values for cer-
tain classes of matrices needed for further calculations (Kishka Z., Saleem M.
2019 [2]). In this article, based on the theory of matrices, matrix exponents and
using the Jordanian canonical form of matrices, we formulate a basic toolkit of
definitions and key properties of special matrix-variate functions. These proper-
ties are applicable to the widest range of matrices and have an explicit form, that
is, they can be used for further research with minimal changes.

First, the definition and key properties for the matrix Gamma function will
be given, as an example of a univariate special function, followed by a series of
two-variable special functions such as the Beta function and the Jacobi Theta
function. A comparison of the obtained results with the existing methods men-
tioned above will also be made
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UNIVARIATE SPECIAL FUNCTIONS

1 GAMMA FUNCTION
1.1 the definition and the general form of the matrix-variate gamma function

For the Gamma function and all subsequent special functions, the integral defini-
tion of functions was taken as the basis of the study. Specifically for the Gamma
function and the Beta function, the following shift was also made to simplify the
calculations:
Definition. For an arbitrary matrix 4, we define
< to simplify further 2
I'(A)= ijilefxdxz ) PHLY =J.xBe7xdx. (2.1)
0 calculations replace A -1 =8
From this definition using the matrix, we get the following form for the ma-
trix-variate Gamma function:

kxk)

For an arbitrary matrix 4 e R! , which has the Jordanian canonical form

J=U""AU its’ Gamma function will have the form:

I(A)=UrJHu,

I'(J,, (M)
I'(J, (A
I (J)z ( rz( 2)) . — block matrix,
r'(J, (A))
where
L, ;)=
T +1) T +1) 2o+ 0+
F(?L-l-l) J J J J
J 1 2! (r; =2)! (r; =1)!
’ (rj=2)
' +1 r A+l
0 T, +1) e, +b r’ o+
/ ! (r; =2)!
= 0 0 T(,+1) .. F122)
(L, +1) I"(L; +1))
1t 2!
I'n; +1
0 0 0 ... L, +1) %
0 0 0 - 0 T(h;+1)

The blocks of the resulting matrix correspond to the blocks of each of the ei-
genvalues of the Jordan matrix J of the matrix 4 and have the corresponding

dimensions (7;x# ). It should also be noted that these matrices are upper-

triangular, that is, they have zero-values below the main diagonal. This fact will
also be important for the subsequent special functions.
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1.2 Main functional equation

One of the most important and used properties of the Gamma function is the func-

tional equation, as several other properti

es of the Gamma function are based on it.

Also, this property allows you to recursively find the values of the function,
thereby significantly simplifying calculations.
For a scalar argument, the identity has the following form:

T(A+1)=

To prove this statement in the ma
auxiliary equality:

A¥T(M). (2.3)

trix case, we first consider the following

el 10 0
0 A+l 1 :

=l o 0 |=J, (L+1). (2.4)
: oA+l 1
0 0 A+l

Let us now use this and definition (2.2) to generalize identity (2.3):

1o, 00+ n=""5 = (s, 0, +1)=""8 -
(A @4 VT2
' " (rj=2) (rj=1)
'O+ T'0v; +1) I+ T 0 +2)
T(h;+2)
J I 2! (r; =2)! (r; =D!
: (r-2)
I'h:+2 - +1
0 F(hj+2) # #)
1! (r; —2)!
= 0 0 T(h;+2) .. :
T'(h; +2) "\ +2))
I 2!
'L +2)
0 0 0 T(L;+2) —
0 0 0 - 0 T, +2)

Using the properties of the derivati
ties of the Gamma function itself:

ve of the Gamma function and the proper-
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o, +2) S TR D
! ! . -2)! Y

0 T(.,;+2) r'e,;+2) r 2@, +1
1! (rj_z)!

0 0 T(h,+2) s : =

' +2)  T'0+2)
T 2

'L +2)

0 0 0 T(h; +2) —

0 0 0 0 T, +2)
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A +DI' A+ D+ TR + 1)

A, +DI(R; +1)

1!
_ 0 (A, + DT (A, +1)
0 0 0

O +DT DO + )+ (s = DRV (0, +1)
(r =D!
Oy + D' + 1)+ T +1)

1t
0 (b, + DI, +1)

Now we split the obtained matrix into two separate matrices, grouping all
terms with the coefficient (A; +1) into the first, all others into the second:

(O + DI (L, +1) O+ Do, +1)

A +DI(A; +1)

1t (r, =1)!
0 A, + DI +1) : +
. . A +DI'(N; +1)
1t
0 0 0 (+DI(h+1)
(A +1) ;=D (0, +1)
1! (r; = 1)!
40 0 : :
. . F((ki +1))
1
0 0 0 0

subtract (A; +1) from the first term as a matrix and reduce the factorial and coef-
ficient in the second:

'O +1) o, +1)

I\ +1) ! Y

(,+1) O (A, +1) : N
. . I'(h; +1)
1!
0 0 0 I'(h+1)
L +1)  I((h;+1) r2am, +1
1! 2! (r =2)!
0 0 E :
e . I +1) IOy +1) |
1t 2!
0 r((x{.‘ﬂ))
0 0 0 0
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= + DI, )+ (T, (M), (0).
That is, we get the following identity:
I'(J, )+ D=0y + DI, )+ T, (1)), (0).

Generalizing for the matrix 4=U J,. AU -1

F(A+D)=\; +DI(A)+ (AU J, (U™ (2.5)
As we can see, it was possible to prove a property similar to (2.3), but to
which the correcting term ["(A)U I ()14 ! is added. Indeed, if we take the di-

mension of the matrix 4 as (1x1), i.e. return to a scalar variable, then the second
term of the identity will be equal to 0 and we will return to the widely-known

identity (2.3).
1.3 Euler’s reflection formula

Before moving on to the generalization of the reflection formula, we give an addi-
tional auxiliary property:

emx,hlx (m lnx)r}*lemk,-lnx
o o (r.=D!
rmt,() =[e e ax=[| 1 : e dx =
0 0 0 emh,lnx
"o (=D
T, +1) I''(mk; +1) I (mk; +1)
I ;=1
_ 0 (A, +1) : (3.9
. . I'(mk; +1)
1!
0 0 0 I'(mhk +1)
Now let's return to Euler's reflection formula:
r'J,aNrd, -J.(,)) =
I-» -1 0 .. 0
0 1-x -1 .
=\l -J,(A)=| o . 0 :—J,l_(?»,»—l):
: : T e
0 .. .. 01—k
' +1) ro%no. +1)
rog+y —~x=2 L ST
1! (r, =D
6I1. .
=I(J, ON(=J, Oy +1) =] 0 I+ : «
U G ))(3-9) : : I'(A; +1)
1!
0 0 0 I'(k; +1)

Cucmemni docnioxcenna ma ingpopmayivini mexnonoeii, 2024, Ne 4 121



D.O. Shutiak, G.B. Podkolzin, V.G. Bondarenko, Y.A. Chapovsky

Ui, +2)

r,+2) 2t
: 1 (r, —1)
g0 a2 : _
. (-3, +2)
I
0 0 0 I(-A+2)

= I, (T, (1=2)

Derivation of Euler's reflection formula:
Consider the following product:

r(%z,i +J, (x,.))rezri -J, (x,.)j;

—+A, 1 0 0
0 l+ki 1
1 2 . 1
~I1,+J,(0) = L0 =L
27 1 2
—+A,
2
0 0 —+A,
l—ki -1 0 0
2
0 l—ki -1
1 2 . 1
=1, —-J,(h)= 0 . 0 |=—J M5
2 ) 1 2
—=A, -1
2
0 0 l—ki
2
1 1 1 1
2 i 1 2 i I 2 2
3 F’(ki +;j F(’i_l)(ki +2)
F(ki+—)
2 I (r; = 1)!
3 .
0 F(ki+—j
2 X
F’(ki+3)
. 2
' 1!
3
0 0 0 F(kﬁ—)
2
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S e
2 1! (r =1
0 F(_ A +1j
» ? W FrOeare,a-) -
F’(— A +j
L 2)
1t
1
0 0 O F(_ 7\’1 +]
2

3 k 3\ r-1-ik 1
F(X,-+2)X Tt >(xi+2jr( ) —x,.+5

0
W(r—1—7— !
F(_kj'i'lj Py K(r—-1-i=k)!
_ 2
F(ki—ks]x
2
F(—kﬁlj
2
F[Ki+3j><
2
0 0
1

2 BETA FUNCTION

2.1 Definition of the matrix-variate beta function

Similarly to the previous subsection, let's start with the definition of the matrix-
variate Beta function, using the integral definition of the Beta function:

1
B(x,y) = [t (1t} "at.
0

(kexk)

For two matrices X,Y eR with Jordan canonical forms X =U,J,U; '

Y =U,J,U;" we consider the function of two matrix variables. We will first per-

form the following calculations for their Jordan matrices, respectively:
1
B(J,(M),J, (M) = jeln(f)fr () pln(=0)7 ;- (2) gy
r Y

0
Now we present and analyze the integral product separately:
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IO (-0 M(l,m)
07 (1) Jn (=0T, (h2) _

0 () o In(i-1)

where M ; ,,)is an arbitrary product of the /-th row and m-th column of the initial

matrices, and m >/ :

m—[
Mg,y=2/0 ... 0 e}”lln(”e}”zln(l_’)M .. 0 ... 0]
’ (m-1)!

The number of zeros at the beginning and at the end of the product is / and
k—m—1, respectively, so the resulting sum will consist of the middle part of the
vector:

& (In(@) (An(L=)"""7 5 1)y -1

M =
(- ]ZO Mm=1)- ))!

Then, returning to the integral, we get the following:

1
J‘ekl I h2 (=0 gr — (A, +1,1, +1)— elements on the main diagonal;
0

Jl"”z‘:l (In(?))’ (In(1 =)D~ PMIn() Ao In(i=r) _
020 J((m=1)=j)!

m—1 (m-1)
=0/ J) o=ty y=h, +1
0 B((m—-1)— j)

It should be noted that the resulting matrix, namely an arbitrary element in
the form of the sum M, ,,, and the corresponding resulting sums of derivatives
depend only on the difference of indices (/,m) , and not on each of them separately.

This, in turn, means that these elements are equal to each other for m and / on the
corresponding diagonals, which significantly reduces the number of necessary
calculations for finding the explicit form of the matrix B(,) for specific values.

Now let us return to the initial general definition for arbitrary matrices X,Y :

BX.Y) = ieln(l)XeI“(l_’)Ydt _ using the Jordan _
’ o decomposition

1
:.[Uleln(z)JlUf1Uzeln(1—t)J2U£1dt;
0
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Compared to the situation with functions of one variable (e.g. Gamma func-
tion), when we start working with functions of several matrix variables, we have
two different Jordan transformations, and that is, two different matrices U, U,,

which greatly complicates the task and makes it impossible to establish a direct
relationship between B(X,Y) and B(J;,J,) to obtain a clear analytical view of

the resulting matrix. In this regard, it is advisable to further consider the matrices
X, Y as a pair of commuting matrices, which will give us the opportunity to find

a common Jordan basis for them, i.e. U; =U,. Also, in several points, it will al-

low the use of properties of the matrix exponent only for commuting matrices.
Therefore, taking this into account, we get the following result:

1 1
B(X,Y)= IUeln(t).llU—erln(l—t)./2U—ldt __ Ujeln(t)./leln(l—t)sztU—l _
0 0

=UB(J,,J,)U"".
2.2 Certain properties of the Beta function

1) Symmetry: B(x,y)=B(y,x)

Since commuting matrices were chosen for research from the previous point,
symmetry for matrix arguments is also preserved.

2) Partial case of the function B(1,x)=1/x.

For the matrix-variate function, let's start with J,.(&,) :

1
B(1,J,) = ["=07 00 gy
0
In this case, we have a single matrix of the form:

f— _
oM n(i=0) (1n(1 - z)) LohIn(-1)
N (k—1)!
(=07, () _ . ; ;
0 67»1 In(1-¢)

Then, with the absence of a product, we go directly to the integral:

(k-1) ~1
By +1) ... O By X
k=D gF 1 y=r+1
B(1,J,(\))= : : -
0 B(LA, +1)
(k-1)
B(L,A, +1) I 0% B0y
(k=10 ar 1t |y=2i+1
0 B(,A +1)
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=
Ml G =DI0y +D property of the
= " : =", =S D),
0 1 jordan matrix
A +1
1
where f(x)=—.
X
So, we see a complete analogy with the property of the scalar Beta function.
Summarizing:

B(I,X)=UB(I,J)U".

2.3 Pascal’s rule or the Beta function recurrence relation

Pascal's rule is one of the key identities in combinatorics and given the relation-
ship between the Beta function and binomial coefficients, as well as its use for the
recurrent computation of the Beta function, it will be appropriate to try to general-
ize it for two arbitrary commuting matrices.

1
B(X + 1Y)+ B(X,Y +1)= "X D=0 gy
0
1 1
+J'eln(t)Xeln(lft)(Y+1)dt _ J‘(eln(t)celn(lft)Y +eln(z)Xeln(lft)(Y+[))d[ _

0 0

1
j (U O 1O 0 1=0T2 171 | 701 =1 (=021 (=01 y gy
0

= accordingto properties of commuting matrices and exponent =

1
J‘(Ueln(t)Jleln(l—t)JzU—leln(t)l + UMD eln(l—t)JZU—leln(l—t)I)dt _

0

1
J‘(Ueln(l).ll eln(l—t)J2 U—l (eln(t)l + eln(l—t)[ ))dt )
0
According to the property of the matrix exponent, the two terms obtained are
found as exponents of the diagonal matrix:

eln(t) . 0 eln(l—t) . 0
B T 1 e A
0 ... O 0 ... (D

So, the end result is as follows:

1
B(X + 1Y)+ B(X,Y + 1) = [(Ue" 1" 02y 1) dr =
0
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1
=U [" 0100y = UB(J),J,)U T = B(XLY).
0

Similarly to the scalar Beta function, Pascal's rule holds and has the same
form, unlike many other properties that have additional constructions when work-
ing with matrix variables.

3 JACOBI THETA FUNCTION

3.1 Definition of the main Jacobi Theta function in the form of an infinite sum

9, O, 00 = Y 0" H",

n=-—0o0

where O =e™/r*2) H = 2™/r (A1)

As in the previous section, let's start with each of the factors separately and
then move on to the general form of the product:

an _ enmzj,(xz) _

.2 ~ 9 ' ) L
wint, T A2 (rin®) 2™ 2 (min?)Flemn R
e
! (k-2)! (k—1)!
2
. 2\k-2 min“A
0 eninzkz (ﬂjm ) e 2
- (k-2)!
0 0 . . E
2
. 2 min“A
nin’Ly nin“e™" "2
e
1!
Ttinz}\,z
0 0 0 e

H" = o2mind (M) _

ercinkl Tcinem’nk] (Ttil’l)k_z eﬂ:inkl (Ttil’l)k_l eﬂ:ink]
1! (k—2)! (k—-1)!
0 G M
- (k=2)!
0 0 :
. Ttl'rﬂ\.l
em'”zkz mine
1!
0 0 o O eﬁl‘nzkz
Then the product of these matrices will be:
2m'n7»1 Ttin27\.2
5 e e ces M(l,m)
(Qn Hnj — : ‘. .
0 e2m'n kleninzkz
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where M, ,,y is the product of the /-th row and the m -th column of the initial

matrices for m>1.

. 210 N N . \0
M(l ) :Z 0..'0621:[11%161:[1127»2 (TClI’Z ) (271:1”) ”'(TCZI’Z ) (ZTU}’Z) 0..0 ,
’ 0! (m—1)! (m—1)! o!
while the number of zeros at the beginning and end will be equal to / and
k —m —1 respectively. Then as a result we get the sum:

TN N R
M(l m) = mzl (TCll’l )j (27‘Eln)m ! eZninklenilﬂKZ.

o i m—1- )

Thus, similar to the product for the Beta function, we get a matrix element that
depends only on the difference in the indices of the initial row and column, i.e. all the
elements of the resulting matrix will be equal on the corresponding diagonals.

The next step is to return to the initial form of the function, namely to the sum:

- 1 8"7'9(z,1

S(A,hy) & m—1- )5 m—l—(j8 j) z=M
J:OJ‘ J)-oz T TZ)\,Z

8(']r (?\’1):'];’ (7\‘2)) = . . 5
0 S(Ai,00)
forZ,T 1
S(Z,T) = . =U8(J1,J2)U
commuting

3.2 The period of the Jacobi theta function

The scalar Jacobi theta function is periodic with a period of 1 in =z:
9(z £1,7) = 9(z,1), and by completing the square, T — quasiperiodic in z:

9(z+1,1) = TFEG(z, 7).

In the case of matrix variables, the 1-periodicity of the first variable is trans-
formed into the periodicity of the unit matrix 7 :

S, M)+ 1, (hy)) =T, (M) + 1=, (g + 1) =8, (A +1),J,. (X)) =

m
80 +L2y) . Y

- m—I[
BRI 0| NP
o J\(m—=1—= """ 51/

J 'C:}\/z

0 9k +1,09)
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ml 1 §"19(z,7)
‘ ;) Jlm—1— ) 6z g/ 2=h
/= T= 7\.2
= : ZS(JV()\‘I)’J;”(AQ))'

0o .. 900 0)

(M hy) ..

Then for two arbitrary commuting matrices Z, T :

© . .2 > . . .2
S(Z-I-I,T) — Z e2mn(Z+1)e2mn T _ Z e2ngeZmnle2mn T _

n=—owo n=—ow

s . . .2 0 . . )
— Z UeZanlU 1621'chUe2mn JZU 1_ Z Ue2anle2mn[e2mn J2U 1 _

n=—oo n=-ow
i : 2
— Z Ue21‘cm(J1+[)e2mn .]2U71 — US(J,.(}LI)JF],JF(}\.Z))U71 —
n=—0

=US(J,,J,)U ™ =9(Z,T).

4 COMPARISON OF THE OBTAINED RESULTS WITH EXISTING METHODS
OF WORKING WITH MATRIX-VARIATE FUNCTIONS

4.1 Comparison of obtaining the matrix Gamma function using the Lanczos
approximation method and the obtained method

Computing the matrix Gamma function by the Lanczos method [3] is performed
on the basis of the following formula:

r(4)= M[A + (a + %m“;] e_[“(“;)’ ] <

k=1

x[co(a)l +3 (o) (A+ k-1 + ea’m(A)}
where ¢; (o) are the Lanczos coefficients that depend on the parameter o .

Typically, pre-logarithmization is used to optimize calculations and avoid
overflow problems during calculations:

In(7°(4)) :%ln(zn)+(A+%Ijln(A+(a+%)Ij—(/l+(oc+%}]}+

+ ln[cocl + i oA+ (k- +e,, (A)J .
k=1
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It is also important to note that the set of coefficients ¢, (o) is found empiri-
cally [3] and for the example for the pair =9, m =10 the following values are
used:

¢ (9)
1.000000000000000174663
5716.400188274341379136
— 14815.30426768413909044
14291.49277657478554025

—6348.160217641458813289
1301.608286058321874105
—108.1767053514369634679
2.605696505611755827729

—0.742345251020141615x107>
0.538413643250956406 x107
—0.402353314126823637x107>

Olw|(w|a|lubh|lwivw|—|o|

—_
(=]

Now let's compare the actual algorithms for finding matrices by these two
methods:

Algorithm for finding the function Algorithm for finding the function
using the Lanczos method using the Jordan form
1.Set a=9; m=10; S=c¢y/ +c1A_1 ; 1. Eigenvalues A; of matrix 4;
2. for k=2:10 2. Eigen and adjoint vectors Xx; ;
3.8=8S+c (A+ (k=17 3. Jordan form J ;
4. I'(J) and transitional matrix U
4. end
based on x; ;
5.L= ;ln(Zn)1+(A—;1]1n(A+127[)—
- 5. [(A)=Ur(Hu.
—(A+Ij+ln(S) ;
2
6. I'(A)~e". -

So, as we can see, the proposed algorithm is much more convenient for actu-
ally finding the values of the matrix Gamma function /'(4) in comparison with

some existing numerical methods. It is also in addition to the above that our
method has the advantage of being able to use the obtained function and its prop-
erties in further research. Similar results were obtained for Spouge’s approxima-
tion method [3], since both of them have similar algorithms.

4.2 Research using the Schur decomposition

The Schur decomposition method [4] is based on the decomposition of the input
matrix and its representation through unitary and upper triangular:

VA,BeC(nxn):A*B=B* A4, 3U, R,R,:A=0RQ"; B=0R,0".
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Thanks to this, in their work L. Jodar, J. CCortés [5] for two commuting ma-
trices proved several properties of the matrix-variate Beta function, namely the
symmetry of the variables and the connection with the matrix Gamma function:

B(P,O)=I'(P)Y[(QI'=1(P+ Q).

It should be noted that the last property was proved only for diagonalizable,
commuting matrces P and . Compared to the obtained results, we coan sii that
the main advantage of using the Jordan canonical form is the presence of an ex-
plicit form of the resulting matrix. This, in turn, gives us the following advantages
compared to the Shur Schedule:

o Ability to derive properties associated with certain partial cases and spe-
cific function values;

e From the point of view of computational complexity, although histori-
cally the calculation of the Jordan canonical form was usually considered a very
difficult task, the properties of the matrix function from the Jordan matrix allow
us to bypass this step, and so the need remains only to find the eigenvalues and
the corresponding vectors to form a basis. Then, comparing to the Schur decom-

position, which has a computational complexity of 0(n3) , our method will have

an approximate complexity of O(n®), 2<®<2.376.

4.3 The zonal polynomials method

The method of zonal polynomials [6] is one of the methods for studying such
functions using integrals and the difference in approach will be illustrated on its
example.

In this method, the studied function differs from others, namely, it has the
following form:

Iy a—(mH) b—(mH)

B,(a,b)= [det(X) 2 det(l,-X) 2 dX.
0

Additional results and generalizations of this function were found using
zonal polynomials and evaluating the resulting integral for them. The main use
case of it and its generalized forms is the matrix beta distribution:

For U ~BIIJ (a,b), the distribution density of the positive definite square

matrix U :
(0= g™ s, -0
=———det et - .
B, (a,b) P
As we can see, this function and similar functions of this type contain only
matrix determinants and, in some cases, trace. This means that these functions are
limited to uses only in problems in which the input signal has a matrix form, and
the output signal is already scalar. This has a number of disadvantages in solving
some statistical problems in which it is important to leave connections between
certain vectors or blocks of vectors, like the problems that were mentioned in the
introductory section.
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KJACHYHI CHOEIIAJBHI ®YHKIIIi 3 MATPUYHUMHU 3MIHHUMH /
J.0. Uyrsxk, I'.b. [Toakomsin, B.I'. Bornapenko, F0.A. Yanoscekuit

AHoTauisi. PO3rIsHYTO JeKijbKa HAMOIBII YaCTO BUKOPUCTOBYBAHHX CIICHiaIbHUX
(GyHKIH Ta X KJIIOYOBI BIaCTUBOCTI, @ TAKOXK 3alIPOMIOHOBAHO aHATITHYHUIT MMiAXiz
10 T00Y10BH iX aHaJIOTiB i3 MeTpuuHUMHU 3MiHHUMU. 11106 nocsrTu nporo, Mu yHu-
KaJI1 BUKOPUCTAHHS OyIb-SIKHX alTOPUTMIB YUCEIHHOTO HAOIIKEHHS Ta HATOMICTh
HOKJIaJaIuCh Ha BIACTHBOCTI MaTpPHIlb, MATPUYHOI €KCIIOHEHTH Ta JKopaaHoBy HO-
pManbHy GopMy ISl IPEACTABICHHS MaTpUllb. MU 30CEpPEANINCh Ha TaKUX (yHK-
LisIX: raMMa-QyHKIIA K Tpukiaj (QyHKII] ogHiel 3MIHHOI 3 BEIHMKOIO KUIBKICTIO
BJIACTHUBOCTEH 1 3aCTOCYBaHb; OeTa-(YyHKIIA, MO0 MiAKPECTUTH MOAIOHOCTI Ta Bil-
MIHHOCTI BiJ JOJaBaHHs JPYrol 3MiHHOI 10 (GYHKIII MaTpUYHOI 3MIHHOI, TeTa-
¢yukuis SAko6i. [ToOynoBano siBHI mpeacTaBieHHs (QYHKIH i JOBEIGHO NEKijIbKa
KJIFOYOBHX BIIACTUBOCTEH JUIsl UX (YHKI[H; BUCBITIICHO Ta MOPIBHSHO iHIII MiIX0-
M, SIKi BUKOPHCTOBYBAJIKCS B MHHYJIOMY [UIs BUPIIICHHS LIUX 3371ay.

KonrodoBi cioBa: matpunys, crenianbHa (yHKIiSA, raMma-QyHKis, O6era-QyHKis,
teta-dyHkuii Jxo6i, XKopranosa HopmaibHa popMma.
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