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IDENTIFICATION OF NONLINEAR SYSTEMS WITH PERIODIC
EXTERNAL ACTIONS (PART III)

V. GORODETSKYI

Abstract. The article considers the problem of identifying a mathematical model in
the form of a system of ordinary differential equations. The identified system can
have constant and periodic coefficients. The source of information for solving the
problem is time series of observed variables. The article studies the effect of uni-
formly distributed noise on the identification result. To solve the problem, the algo-
rithm proposed by the author in previous works was used. It is shown that the meth-
od has different sensitivity to noise depending on which of the observed variables is
contaminated with noise. The implementation of the method is illustrated by nu-
merical examples of identifying nonlinear differential equations with polynomial
right-hand sides.

Keywords: identification, ordinary differential equation, periodic coefficient, con-
stant coefficient, uniformly distributed noise.

INTRODUCTION

When developing mathematical methods for studying various physical systems, it
is necessary to evaluate reliability of their results if applied to systems in real
world. One of the common tasks in applied mathematics is the problem of identi-
fying a mathematical model of a certain process. The initial data for solving this
problem can be the observed variables of the process. If we study real systems,
the results of measurements of the observed variables may contain noise [1-3].
This circumstance can complicate the identification of the model.

BACKGROUND AND TASK FOR RESEARCH

We follow the results obtained in [4; 5]. There, the problem of identifying a
system of n ordinary differential equations with constant and periodic coeffi-
cients ¢;(#) (i=L..,n; j=L..,m) was considered. The initial data for identifi-
cation was time series of observed variables x;(¢), t€[0;t,],¢, >0. To solve the

problem, the theorem proved in [4] was used. According to this theorem, simple
relationships that are used to identify equations with constant coefficients can be
used to identify differential equations with periodic coefficients. For this purpose,
the calculations must use the values of the functions x;(f) at moments of time ¢ ,

separated from each other by the value g7, g<1,2,3,..., where T is the period of
the periodic coefficients. In other words, this time moments obey the relations

ZIZZO + 7T, t2:t0 +2T, ey Zm:ZO +mT, tO ZO, T>0, tmgl‘e, (1)
where t=q7 .
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Examples of the method application were demonstrated in [4; 5]. In this
study, we try to apply the proposed algorithm to identify equations by observed
variables with noise. As in the mentioned articles, we use as an example a system
of the form

)'Cl =Xy — X3,
).Cz =X~ dX2, (2)
X3 = C30(8) + ¢33 (1)x3 + 36 ()X X3,

obtained on the basis of the Rossler system [6]. The parameters of the third equa-
tion of the system (2) are as following:

¢30(£) = 0.5+ 0.4sin (?] cy3(1) =20, esg()=5, T, =2s.
0

The generalized structure for the purpose of identifying the desired equation
has the form

- 2
X3 =C30(1) + 31 (0)x) + 3 ()% +33(0) X5 + C34 (£)x] +¢35(0) X%, +

2 2
+ 36 (0)X1X3 + 37 (£)x) + c35(£)Xpx3 + 39 (1) X3 (3)

Next, we will consider how adding noise to different observables affects the
identification result.

IDENTIFICATION OF AN EQUATION WITH A VARIABLE x,(¢) AFFECTED
BY NOISE

For the study, we add noise with a uniform distribution to the observable x;(¢) .
The noise value is Au; =0.01-Ax;, Ax

respectively, the maximum and the minimum of the observable x,(t) over the

= |*1max ~ X1min|* *lmax and Xmin I,

studied interval of 100 s. Fig. 1 shows a fragment of the time series x;(¢) with
added noise.
The first stage of model identifica- x,(6)

tion with this algorithm is to find those 4.41
values of 1 (see (1)) that can be equal to 421
or multiples of the expected 7. The val-
ues obtained by applying the algorithm
are presented in Table 1. The table shows 38
in bold the t values that are repeated or
multiples of other values. This means that
they may be the sought-for values of T or
multiples of this value. For example, the
values 1.04, 3.01, 4.88, 5.30, 5.67, 10.96
are repeated. The set: 2.65, 5.30, 10.60 is
also highlighted in bold because the second and the third values of it are multiples
of the first one. Similarly, the value 6.00 is a multiple of 3.00. The values 2.20

4,01

3,61

204 20,7 210 ¢
Fig. 1. Time series of x,(¢) contaminated
with noise
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and 7.70 are multiples of 1.10, which is not in the table, but which may poten-
tially be the sought-for period. For the same reason, 6.00, 8.00, 10.00 are high-
lighted, which are multiples of 2.00, which is not in the table.

Table 1. The result of applying the algorithm for observable x;(¢) with noise

The t values calculated for the coefficients of the third equation of system (2)
» c30(0) | c31(0) | e3p(t) | e33(0) | c34(0) | e35(0) | c36() | €37(0) | c33(0) | c30(0)
1925 | 524 | 518 | 408 | 595 | 726 | 1.84 | 6.00 | 1.72 | 2.63
2| 088 | 1.27 | 334 | 1.29 | 531 | 586 | 2.65 | 6.03 3.66 | 0.86
31 770 | 10.96 | 3.00 | 818 | 898 | 6.00 | 5.18 | 6.64 | 3.01 | 5.67
4| 1.04 | 331 | 991 | 298 | 591 | 320 | 536 | 0.81 | 585 | 2.58
51 823 | 230 | 1094 | 1095 | 333 | 772 | 5.67 | 7.07 | 823 | 745
6| 3.01 | 436 | 586 | 3.01 | 474 | 530 | 539 | 7.79 | 10.60 | 1.91
71 9.17 | 488 | 591 | 532 | 1096 | 497 | 9.07 | 892 | 9.06 | 1.08
8| 481 | 10.00 | 1.85 | 349 | 9.80 544 | 3.01 | 799 | 6.00 | 7.44
91 488 | 220 | 479 | 758 | 8.00 | 598 | 5091 1.53 | 10.66 | 9.24
10| 298 | 443 | 799 | 530 | 148 | 759 | 147 | 950 | 4.02 | 1.04

We have to, based on the data in Table 1, reject the excess coefficients of the
desired equation and estimate the type and values of the remaining coefficients.
For this, we use the second part of the algorithm. Namely, for each value selected
in Table 1, we solve a system of the form

C=A"B, 4)
where C is the vector of the required coefficients of the third equation of sys-
tem (2), and B is the vector of values x;(¢;), k=0,..,m, A is the matrix of
function f;(x(#;)) values, j=0,...,m, X={x,...,x,} . In this study we consider
as functions f;(x(#;)) the products of x; in each monomial of the right-hand side

of (3). We set some interval of change #, from (1) and obtain the calculated val-

ues of the coefficient on this interval. The resulting time series of coefficients al-

low us to estimate the type of coefficient and the possible value of 7.
To begin with, let us try to identify zero coefficients in the analyzed equa-
tion, provided that the selected value of t

1,0,¢34 (1) from Table 1 can be the desired period 7.
For example, Fig. 2 shows the time series
0,57 of the calculated coefficient c5,(¢r) for

t=1.04 s on an interval of 4 s.

0,04 . .
' As can be seen, this coefficient has
values close to zero on this segment. At the
-0,51 same time, its greatest deviation from zero,
‘o including at singular points, is |c3,4 () <1.

0 1 2 3 4 ; We will assume that if these conditions are
met, this coefficient is a candidate for

Fig. 2. Time series of calculated coef- . Nand 3
zeroing. Such a criterion was applied to all

ficient ¢35, (7)
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coefficients for all selected Tt from Table 1. The results of the analysis are
presented in Table 2, where the coefficients that may be zero in the desired
equation are marked with a “+” sign. Note that this table has been supplemented
with the values t=1.10 s and t=2.00 s, which, as explained above, may also

be values of the period T .

Table 2. Results of the analysis of time series obtained for the selected values
of © from Table 1

Possible values of T or its multiples

Ne 1.04/1.10|2.20/7.70|2.00|6.00{8.00/10.00 (3.00{3.01|2.65|5.30|10.60 [4.88|5.67|10.96
Cyq | T

Cis + |+ + +

cyp | + + |+ + |+ + |+ +

According to Table 2, the most likely candidates for zeroing are coefficients
¢35 and c3;. Taking ¢35 =c37 =0 and performing an analysis similar to the pre-

vious one, we obtain Table 3.

Table 3. The same as in Table 2 with ¢35 =c3;, =0

N Possible values of T or its multiples
1.04 2.00 4.00 6.00 8.00 | 10.00 | 3.00 | 10.60 | 4.88 | 10.96
3 +
c3 + + +
Cy4 + + + + + +

Note that Table 3 does not include the t values from Table 2, for which (ac-
cording to Table 2) it is not possible to determine the coefficients that may be
subject to zeroing. It should be noted that the value t=4.00s is added to the ta-

ble because it is a multiple of T=2.00s . One can also pay attention to the graph
c30(¢) obtained, for example, at t1=4.00s (see Fig. 3). We can already assume
from it that 7 =2.00s .

Based on Table 3, the next step .
should be to zero out the coefficients in- 3,30 (?) I
cluded in it. As a result, time series of

the remaining coefficients ¢5,(7), ¢5;(¢),
c56(1), csg(t), c5o(f) were obtained. H A "

For further analysis, let us consider

graphs c¢5(¢) and c55(¢) shown in Fig. 4.
Despite the large number of points in =17
which the calculated value of the coeffi-

cient c54(r) deviates significantly from 0 5 10 15 20 ¢

zero, we can assume that c;3 =0. Graph £i& 3. Time series of calculated coeffi-
¢ o . cient ¢5,(¢)
c39(t) looks similar, which also allows us
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to exclude it from the desired equation. On the contrary, most points of graph
c53(t) clearly have values different from zero. Graph c54(¢) looks similar to
¢53(?) . Therefore, at the next step, it is advisable to zero out the coefficients cq

and c39. As a result, this method gives us the structure of equation analogous to
the apriori equation (2). Time series of calculated coefficients are shown in Fig. 5.

6.C55(0) | 50,30
"l ' 25
21 0]
01 25/
2] 50
4 751
6 00- ;

0 5 10 15 20 ¢
a
Fig. 4. Time series of calculated coefficients c5¢(7) and c;(¢)

21 ¢50() 101 ¢55(0)
0.
1_
-10
0 20/
-304
-1
-40
2 , S -50
20 25 30 35 40 t
301 cS6(0)
201
104 I’ =| I
.0
-104
-204
-30

20 25 30 35 40 ¢
Fig. 5. Time series of calculated coefficients of the identified equation with the desired
structures

IDENTIFICATION OF AN EQUATION WITH A VARIABLE X, () AFFECTED
BY NOISE

A study similar to that performed in the previous section was also performed for
a variable with the same noise level Au, =0.01- Ax, . The result is shown in Table 4.
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Table 4. The result of applying the algorithm for observable x,(¢#) with noise 1%

The T values calculated for the coefficients of the third equation of system (2)
c30(0) | e31(0) | ex(t) | e33(0) | e34(2) | c35(2) | c36(t) | c37(0) | c33(2) | €30(0)
2.98 4.00 A 10.00 | 4.00 4.00 8.00 4.00 | 10.00 | 2.00 4.00
2.76 8.00 2.00 8.00 8.00 | 10.00 | 8.00 2.00 | 10.00 | 10.00
1.88 | 10.00 | 8.00 | 10.00 | 10.00 | 2.00 | 10.00 | 4.00 | 8.00 | 8.00
3.34 2.00 7.63 2.00 2.00 4.00 2.00 6.00 4.00 0.86
8.71 1.27 4.00 | 10.95 | 9.80 5.91 1.88 8.00 | 10.67 | 9.24

Ne

N R WIN |~

Based on the corollary of Theorem  10qx,(7)
[4], we can conclude that the equation has a _
single variable coefficient c3y(¢), and the

other coefficients are constant. That is, in
this case, the identification occurs in the
same way as for equations without noise,
see [4,5]. Moreover, a similar result was
obtained by increasing the noise level
added to the observable x,(¢). Fig. 6

t
shows  this  variable  with  noise 0 5 10 15 20
Au, =0.2-Ax,, and Table 5 demonstrates Fig. 6. Time series of x,(f) con-

the result of applymg the algorithm. taminated with noise 20%

Table S. The result of applying the algorithm for observable x, (¢) with noise 20%

N The T values calculated for the coefficients of the third equation of system (2)
T oeo(®) | e3i(0) | (@) | es3(®) | caalt) | ess(t) | esp(t) | e37() | ess(t) | cao(t)

1| 1075 | 8.00 | 6.00 | 800 | 800 | 4.00 | 1035 | 6.00 | 6.00 | 8.00
2| 1.20 | 10.00 | 4.00 146 | 10.00 | 6.00 | 8.00 | 10.00 | 10.00 | 10.00
3| 1.05 | 2.00 | 10.00 | 10.00 | 2.00 | 10.00 | 10.00 | 8.00 | 4.00 6.73
4| 689 | 529 | 800 | 072 | 400 | 800 | 095 | 2.00 @ 8.00 | 2.00
51 2.60 1.86 | 2.00 8.75 6.00 | 2.00 | 4.00 | 4.00 | 2.00 | 4.00

Based on the comparison of these two tables, it can be concluded that the al-
gorithm has low sensitivity to noise in this case. This can also be illustrated by
Table 6, which presents the calculated values of the constant coefficients at 20%
noise for two different #,. It is clear from the table that in the structure (3) all
terms that include the variable x, are subject to zeroing. Therefore, in the subse-
quent steps of identification, only the observables x; and x; will be used, which
in this case are noise-free. This simplifies the task.

Table 6. The calculated values of the constant coefficients at 20% noise for two
different ¢,

Coefficients

)
€31 C32 €33 C34 C35 C36 C37 €38 C39

to1 =0.15s |-1.307 107-7.991 10°|-20.008|-1.288 10 2.425 10 |5.002{1.367 107|3.321 10™4.862 10™*
tp =0.45 |-3.5110°] 2.514 10 |-20.026| 8.848 107 |-3.002 107]5.0063.638 10”/6.584 10™*1.585 10"
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IDENTIFICATION OF AN EQUATION WITH A VARIABLE x3(t) AFFECTED
BY NOISE

Unlike the previous case, the variable x; is present in the desired equation, both
in the right-hand side and in the left-hand side in the form of a time derivative.
A fragment of the noisy series x3(f) With Au; =0.01-Ax, is shown in Fig. 7, a.

x3(1) X3 (2)
0,21 0.2
0,11 0,1 ”fhh
N r
0,01 0,01 MWMW WWMMW
014 : < onl, . -
10 15 20 10 15 20
¢ 2_x3s(t) b
1_
0
-1
t
21 . . ] ,
10 15 ¢ 20

Fig. 7. Time series of x;(¢) : @ — fragment of time series x;(¢) contaminated with noise
1%; b — the same fragment after smoothing; ¢ — time derivative of graph (b)

In order to reduce noise, smoothing was performed using the moving aver-
age method according to the formula

s _ X3y3 t X3y 0 F X3y X3y F X340 T X3040 X343

X3y = ~ s (5)

where x3, is the value of the function x;(¢) at the point with the number v

after smoothing by formula (5). A fragment of the function x3(¢) is shown in
Fig. 7, b. To form the vector B of the left sides in the system (4), it is necessary to

perform numerical differentiation of the function x3(#) . For this, the formula
s x§v+l _xgv—l
Ny ==
2At
was used, where At is a step of time series x3(f) representation. The time series

X3, (¢) is shown in Fig. 7, ¢, which demonstrates that noise is significantly ampli-
fied when numerical differentiation is computed.
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Unfortunately, the application of the algorithm did not allow us to obtain an ade-
quate result. Obviously, the reason for this is insufficient smoothing of the time
series noise and the appearance of significant computational noise during numeri-
cal differentiation.

DISCUSSION AND CONCLUSIONS

From the previous sections it is clear that the most difficult identification is when
the variables x;(r) and x;(f) , which are included in the desired equation, are

contaminated with noise. The results obtained can be explained using Cramer's
rule. When determining the coefficients of equation (3), it will have the form:

det(A;)
& = ay
det(A)
where det (A) is the main determinant of the system of linear algebraic equations

-

(4), formed taking into account conditions (1), det (A ;) is the determinant obtained
by replacing the j-th column of the determinant det (A) with the vector B from (4).

Let the variable with noise be x;(¢) . Then, to find, for example, the coeffi-
cient c3; , we create matrix A; by replacing column 1 with B in matrix A,
which in this case consists of the time derivatives of the values of x;(¢) . That is,
we replace the column of values of noisy x;(¢) with the column B without noise.
Here we assume that the differentiation of the variable x;(¢#) without noise is per-

formed correctly, without significant errors. Therefore, such a replacement, at
a minimum, should not increase the error in calculating c3; .

On the contrary, if the observed variable with noise is x;3(¢) , then when dif-

ferentiating it numerically, computational noise will appear, see Fig. 7, c. Then,
when calculating, for example, the coefficient c3; , we replace the column num-

ber 3 in A with vector B. The column number 3 of A initially contains the vari-
able x5(#) , which contains noise. However, comparing Fig. 7, b and 7, ¢, we see

that the noise in the column B is much greater and can of course be a source of
significant errors.

Taking into account the above, for successful identification of systems from
time series of observations with noise, sometimes it is necessary to use various
noise filtering methods [7—12] that are more effective than (5). The use of more
effective, although more complex, methods of numerical differentiation [13—15]
is also justified.
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JAISAMU (Yactuna III) / B.I'. T'opoxerpkuii
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AHoTanisi. Po3risgayTo npobneMy ineHTHGiIKAIl MaTeMaTHYHOT MOAETI Y BUTILIII
CHCTEMH 3BHYAHMX U(EepeHIliabHUX DIBHSIHb. [neHTH(iKOBaHa cHCTeMa MOXe
MaTd cTam Ta mepiognuHi koedimientu. J[xepenoM iHdopmanii st po3B’sI3aHHS
MOCTaBJICHOT 3a/1aui € 4acoBl PN CIHOCTEPEKYBAaHUX 3MiHHUX. J[OCHIIPKEHO BILIMB
HIyMy 3 PIBHOMIPHUM PO3IOJLIOM Ha pe3yJsbTaT inenTudikaii. Y xoai qocimikeH-
Hsl BUKOPUCTOBYBABCSl QJITOPUTM, 3aI[POIIOHOBAHMIT aBTOPOM Y IONEPEaHIX MpaLsix.
Po3risiHyTO 0COOMMBOCTI 3aCTOCYBaHHS IHOTO AITOPUTMY [UIs AaHOI 3axadi. [Toka-
3aHO, IO METOJ Ma€ Pi3Hy YyTJIMBICTH 0 LIyMy 3aJIeKHO BiJI TOTO, sIKa i3 CIOCTe-
PEeXyBaHUX 3MiHHHX 3a0pyAHEHa mryMoM. Peamizamito MeTomy MpoiTIOCTPOBAHO YH-
CeNIbHUMH TIPUKJIANAMH iJeHTH(IKanii HeMiHIHHNX audepeHniaTbHuX PIBHAHB i3
HOJTiHOMiaJbHIMH IIPAaBUMU YaCTHHAMH.

Kiouosi cioBa: inentudikaunis, 3sudaitne qudepeHiiaabae piBHAHHS, MEPioITd-
HUI KoeilieHT, cTanuii Koe]ilieHT, IIyM i3 pIBHOMIpHHM PO3IOALIOM.
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