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In this paper we investigate the dynamics of solutions of the second order evolution
inclusion with discontinuous interaction function which can be represented as the
difference of subdifferentials. This case is actual for feedback automatic control
problems. In particular, we concider mathematical model of contact piezoelectric
process between a piezoelectric body and a foundation and for this problem
investigate the long-term behavior of state function. We deduce a priory estimates
for weak solutions of studied problem in the phase spase. The theorem on the
existence of a global attractor for multi-valued semiflow generated by weak
solutions of the problem and the structural properties of the limit sets is prooved.
The main results of the paper were applied to the investigated piezoelectric problem.

INTRODUCTION AND PROBLEM FORMULATION

Let us consider a mathematical model which describes the contact between
a piezoelectric body and a foundation. We formulate this problem as in [1].

Let R? be a d -dimensional real linear space and S? be the linear space of
second order symmetric tensors on R with the inner product o:7 = Zaijrl-j
i

and the corresponding norm ||z’||§d =T:T, 04, T; € s

Let us consider a plane electro-elastic material which in its undeformed state
occupies an open bounded domain Q c R? d=2. This domain as a result of
volume forces and boundary friction can contact with rigid or elastic support. Let
the boundary of piezoelectric body €2 be Lipschitz continuous. Assume that the
boundary I', on the one hand, consists of two disjoint measurable parts I', and
I'y, m(I' ) >0 and, on the other hand, consists of two disjoint measurable parts

I') and I'y, m(I',) >0 (Figure). Suppose that the body is clamped on I';,, so

the displacement field u:Q — Rd, u=u(x,t), where Q=Qx(0,+0), vanishes
there. Moreover, a surface traction of density g act on I'y, and the electric
potential ¢ : Q — R vanishes on I',. The body Q is lying on “support” medium,
which introduce frictional effects. The interaction between the body and the
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support is described, due to the adhesion or skin friction, by a nonmonotone
possibly multivalued law between the

g / / / / bonding forces and the corresponding

displacements.
The body forces of density f

consist of force f,, which is prescribed

external loading and force f; which is

the reaction of constrains introducing the
skin effects, i.e. f = f, + f,. Here f; is
a possibly multivalued function of the
] displacement u .

Figure. Partition of T To describe the contact between
a piezoelectric body Q and a foundation
let us consider the basic piezoelectric equations: equation of motion, equilibrium
equation, strain-displacement equation, equation of electric field-potential and

other constitutive relations (see [1] and references therein).
We suppose that the process is dynamic. Let us set the constant mass density
p=1. Then we have the equation of motion for the stress field and the

| toundation

equilibrium equation for the electric displacement field respectively:
u, —Divo=f—-m, in Q, (D
divD=0 in Q,
where ¥ € L”(Q) is nonnegative function of viscosity; o: 0 — S% o = (o) is
stress tensor; D:Q —>RY D= (D;), 1,j=12 is the electric displacement
field; Divo=(oy; ;) is the divergence operator for tensor valued functions;

divD = (D;;) is the divergence operator for vector valued. Equation (1) regulates

the change in time of the mechanical state of the piezoelectric body.
The stress-charge form of piezoelectric constitutive relations describes the
behavior of the material and are following:

o=Asu)-PTE(p) in O,

D=Peg(u)+BE(p) in Q,
where A:QxS? >S9 is a linear elasticity operator with the elasticity tensor
a=(ay), ij.kl1=12; P.0xS? 5R? is a linear piezoelectric operator
represented by the piezoelectric  coefficients p=(py), 1,/,k=12;
PT: OxR?Y s s transpose to P operator represented by
P'=(pj)=(py), i.j.k=12, B:QxRY >R’ is a linear electric
permittivity operator with the dielectric constants f=(8;), i,j=L12

e(u)=(g;W)), i,j=1,2 is the linear strain tensor; E(¢)=(E;(¢)), the electric
vector field.
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The elastic strain-displacement and electric field-potential relations are
given by

ew)=1/2(Vu+(Vu)") in O,
E(p)=—Vep in Q.
We consider the reaction-displacement law of the form:
— [ (x,t) € 0G; (x,u(x,t)) — 0G, (x,u(x,t)) in Q,
where G;: Qx R? 5 R, i=1,2 are measurable in (x,u), convex in u for a.c.
x € Q functionals; 0G;(x,-), i =1,2 are their subdifferentials [2, Chapter 2].

Let u, be the initial displacement and u; be the initial velocity. The
classical formulation of the mechanical model can be stated as follows: find

a displacement field # on Qx R and an electric potential @ on QxR such that:
u, —Divo=f,+ f,—m, in Q,
divD=0 in Q,
o=As(u)- PTE(go) in O,
D=Peg(u)+BE(p) in Q,
— f,(x,1) € 0G| (x,u(x,1)) — 0G, (x,u(x,t)) in Q, 2)
u=0 on I'px(0,T), n=g on I'yx(0,T),
=0 on I';x(0,T), Dn=0 on I, x(0,7),
u(0)=ug, u,(0)=u,,

where n denotes the outward unit normal to T
We now turn to the variational formulation of Problem (2). Let us

consider the space ¥ ={ve H'(Q;R?):v=0 on I'p} c H'(Q;RY). Let H =
=1’ (Q; Rd), H=(Q; Rd) be a Hilbert spaces equipped with the inner products

U, vy = juvdx and (o, 7)y =I0:de respectively. Then (V,H,V*) be an
Q Q
evolution triple of spaces. Then (u,v), ={g(u),e(v))y,

v||V = ||8(V)| oo VeV
is the inner product and the corresponding norm on V. Therefore (V,
Hilbert space.

Assume that G, :Qx RY - R, i=1,2, satisfies standard Carathéodory’s

V) 1S

conditions, and there exist ¢ eL;(Q2) and a® >0, and that I d® ||RdS
<cD(x)+a® lu]lqa for ae. xeQ and any ueR?, dVe oG, (x,u).
Moreover, a® is sufficiently small.

Let us set the following hypotheses for the constitutive tensors:
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() a=(agy), g €L™(Q), @y =i, G =Ajg> G = Gy
A (X)T;7 2 at;T; forae. xeQ, Vr=(r;) e Si ,a>0;

(i) p=(py)> Py € L7 (Q);

(i) B=(By) By =B eL”(Q), By, 2mp ||S|[2g forae xeQ,
V¢ =(¢)eRY, mg>0.

Without loss of generality let us consider g =0 and f, = 0. Following [1],
we present Problem (2 ) in the generalized formulation:

u, (t) + Bu, (t) + Au(t) + 8J, (u(t)) - &J, (u(t)) 5 0, for a.e. t, 3)
u(0)=ug, u,(0)=uy,

where B:H—)V*; A:V—)V*; Ji:H—>R, i=12 are locally Lipschitz
functionals, J; (u):=J.Gl- (x,u(x))dx, i=1,2. 0J; is the Clarke subdifferential
Q

for J;(-), i=12; (V; H;V*) is evolution triple.

Note that the parameters of Problem (3) satisfy following assumptions [1]:

o Assumtion (B): B:H — H be a linear symmetric such that there exists
S >0 such that (Bv,v), = ﬂ”v”z VveH,

e Assumtion (A4): V is a Hilbert space; A:V —V  be a linear,

symmetric and there exists ¢, >0 such that (4v,v), > ¢ A”v”f/ VveV,
e Assumtion (J): J;:H —> R, i=12 be the functions such that
(1) J;(), i=12 are locally Lipschitz and regular (see Clarke [2]), i.e.:

- for any x,veH, the usual one-sided directional derivative
Ji(x+v)—J;(x)
t

-for all x,veH, Ji(xvy=J; (x;v),  where  J;(x;v)=
_ G Ji0+rm=Ji() i

y—x,t—0 t

Ji(x;v) =lim , =12, exists,
t—0

=1,2;

(i1) for i =1,2 there exists ¢; >0 such that

ltl,, <ci+ M), Vieds(v), VveH,;
(ii1) there exists ¢, > 0 such that
)y <A, +ey. Vieds,(v), VveH,

where oJ,(u)={peH |(p,w), <J; (u; w) Vwe H} denotes the Clarke
subdifferentials of J;(-), i=12 at a point ue H (see Clarke [2] for details);
AeOA), 4 >0z c s = 47, wver.
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We define Hilbert space X =V x H as the phase space for Problem (3). Let
—o<r<T <400

Definition. Let —oo <7 <T <+00. The function (u(~),ut(-))T el [7,T; X]
is called a weak solution for Problem (3) on [7,7T] if there exist /; € L, (z,T; H),

i=12, 1;(t)edJ;(u(t)) forae. t €(zr,T) suchthat Vy eV, VneCy (z,T):

T
~ [ @, @y, @t +

T
+ [l @) 5 + @@ g + GO g - GO g In@de =0,
T
Theorem 1.4 from [1] provides the existance of a weak solution of
Problem (3) on [7,7T"] with initial data

u(t)=a, u(r)=>b “
forany aeV, be H.

In the non-autonomous case the abstract existence results for such problem
with nonmonotone skin effects are presented in [1]. The long-time behavior of all
weak solutions for this problem with continuous interaction function is
investigated by Ball in [3]. The solution dynamics for autonomous model when
J, =0 is studied in [4], [5]. The particular scalar situation is considered in [6].
Here we consider the case of multidimensional laws with discontinuous
interaction function which can be represented as the difference of subdifferentials,
that is actual for feedback automatic control problems. The main purpose of this
paper is to investigate the long-term behavior of state function, to study the
structural properties of the limit sets and to deduce sufficient conditions that
direct the system to the desired asymptotic level.

PROPERTIES OF SOLUTIONS

We consider a class of functions WTT =C([7,T]; X). To simplify our conclusions
from Assumptions (A4), (B) we suppose that

V"IZ/ :<AM’V>V3 ﬂ(uav)H Z(BM,V)H,

(u,v)y =(Au,v)y,

ﬂ”v”i[ =(Bv,v)y Yu,vel. )]

Let us set J(u)=J,(u)—J,(u), ue H. Lebourgue’s mean value theorem

[2, Chapter 2] yields the existence of constants ¢;,c, >0 and xe(0,4;):
2 My g2
| J@) < es(U+[ul,). T@) = —3||u||H —¢, VYueH. (6)

According to [7, Lemma 4.1, p.78], [7, Lemma 3.1, p.71] and [1,
Theorem 1.4] the following existence result holds.
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Lemma 1. For any 7<7T, aeV, be H Cauchy problem (3), (4) has

a weak solution (u,u, )T € L, (z,T; X). Moreover, each weak solution (u,u, )T of
Cauchy problem (3), (4) on the interval [7,7] belongs to the space C([z,T];X)

and u,, eLZ(r,T;V*).

Let us consider the next denotations: V¢, = (a,b)T € X we consider
D.7(@,)={uC),u, ()" | (w,u,)" is a weak solution of (3) on [7,T], u(r)=a,
u,(r) =b}. Lemma 1 implies that D, 7 (¢,) = C([7,T]; X) = WfT.

Note that translation and concatenation of weak solutions are also the weak
solutions.

Lemma 2. If 0<zr<T<+xo, @,€X, @()eD, r(p,), then w()=
:(0(’+S)ED2'—S,T—S(¢1') Vs. If T<t<T, D €X, w(')EDT,t(¢z’) and
w()eD,r(p,), then

OS]
w(s), selt,T]
Proof. The proof is trivial.
Let ¢ = (a,b)T € X and

belongs to D, 7 (¢, ).

V(o) =l + 1@ - 12 @), )

Then we have the next lemma.
Lemma3. Let —o<z<T<+m, @, X, p()=u(),u, ()" €D, 7 (p,).

Then Vog:[7,T]— R is absolutely continuous function, and for a.e. ¢t € (7,7T)
d 2
V(o) =~y 0,

Proof. Let —o<z<T <+, () :(u(-),ut(~))Te WTT be an arbitrary weak
solution of (3) on (z,7). As oJ;(u(-)c L,(zr,T;H), i=1,2 then from [7,
Lemma 4.1, p.78] and [7, Lemma 3.1, p.71] we get that the function

t— ||ut (t)||2 + ||u(t)||12/ is absolutely continuous, and for a.e. ¢ € (7,T):
1d
L o, + ool J= 0+ A0, -

=B, O, = @O, ) gy + L O, (1) ®)
where /;(t) e dJ;(u(?)), i=12 forae. te(r,T) and [;(-)e L, (7, T; H).

As u()e Cl([z',T];H) and J;: H > R, i=L12 are regular and locally
Lipschitz, due to [5, Lemma 2.16] we obtain that for a.e. ¢t € (7r,7) there exist

%(Jl- ou)(t), i=1,2. Moreover, %(J,- ou)(-)eL(r,T), i=12 and for a.e.
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te(r,T), Vpedl;(u@®), i=12, %(Jiou)(t)z(p,ut(t))H, i=1,2. In

particular, for a.e. t €(r,7T) %(J,- ou)t)=(;(®),u, (), i=1,2. Taking into

account (8) we finally obtain the necessary statement.
The lemma is proved.
Lemma 4. Let 7 > 0. Then any weak solution of Problem (3) on [0,7] can

be extended to a global one defined on [0,+). For any ¢, € X and ¢ € D(¢,)
the next inequality holds V¢ > 0:

A +2 2 A
Jotolf, < 2 o, + XG0,

s e ©)

where for an arbitrary ¢, € X let D(¢,) be the set of all weak solutions (defined
on [0,+)) of problem (3) with initial data ¢(0) =¢,.

Proof. The statement of this lemma follows from Lemmas 1-3, conditions
(5), (6) and from the next estimates:

Vr<T, Vo, eX, Vo()=u()Lu,()) €D, 1(p,),

2
Vielr,T] 2¢; + [1 + %)"u(r)”i +u, O}, 22V (p() 2 2V (p(1)) =
1

=@y + e, O, +27 i) 2(1 —ﬂllu(r)lli e 0l 264
1

The lemma is proved.
Now let us provide the continuity property for the weak solutions of the
main problem in the weak topologies of the phase and the extended phase spaces.

Theorem 1. Let <7, {¢,()},s < WTT be an arbitrary sequence of weak
solutions of (3) on [7,7] such that ¢,(r) - ¢, weakly in X, n— +o, and let
{t,},>1 <[7,T] be a sequence such that ¢, —¢,, n—> +oo. Then there exists
@D, r(p,) such that up to a subsequence ¢,(?,) > @(f;) weakly in X,
n—+o.

Proof. Let < T, {@,()=u,(),u,()},> < W,T be an arbitrary sequence
of the weak solutions of (3) on [7,7T], and {¢,},>; < [7,T] such that

9,(t)> ¢, weakly in X, t, >t,, n—+o. (10)

According to Lemma 4 we have that {¢,()},>; is bounded on

WTT c L, (7,T;X). Therefore there exists a subsequence {¢, MOl SE=S{ZM O}
such that
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Uy, U weakly star in L, (z,T;V), k—> +oo,
u;k —>u' weakly star in L, (z,T;H), k— +o,
u,';k —>u" weakly star in L, (z',T;V*), k— +o,
lnk’l- -1 weakly star in L (7,T;H), k— +oo,
Uy, U in Ly(z,T;H), k—+o, (11

Uy, #)—>u(@ in H for ae. te[r,T], k—+omo,
u;,k ()—>u'(f) in V' for ae. te (z,T), k—+on,
Bu;lk — Bu' weakly star in L,(7,T;H), k—+om,

Aunk — Au  weakly star in Lz(r,T;V*), k — +oo,

where /[, ; € L,(z,T; H) be such that
Uy () + Buy, () + 1,1 () =1, 5, () + Au, () = F,
L, () ed(u,()), for ae. te(r,T), n21,i=1,2.
Since Jj;, i =12 is demiclosed, the following inclusion holds:
[;()€gj;u()), i=12,where ¢:=(u,u,)eD, r(p,)c WTT.

For a fixed A eV formula (11) implies that the sequence of real functions
(uy, (),1) is uniformly bounded and equicontinuous one. According to (9), (11)
and the density of V' in H we obtain that u, (¢, )—>u'(t,) weakly in / and
uy, (t, )—>u(ty) weakly in V' as k — +oo0.

The theorem is proved.

Theorem 2. Let 7 <7, {p,()},s < WTT be an arbitrary sequence of weak
solutions of (3) on [7,7] such that ¢, (7) > ¢, strongly in X, n— 400, then up

to a subsequence ¢, (-) = ¢(-) in C([7,T]; X), n—>+o0.
Proof. The proof follows from [4, Theorem 2] and Lemma 3.

MAIN RESULTS

Now let us examine the long-time behavior of all weak solutions of the main
problem as time ¢ — +oo. For this purpose let us define the m-semiflow G as

G(1,0) = {5(1) [ £() €D(&p)}, 120. (12)

Denote the set of all nonempty (nonempty bounded) subsets of X by P(X)
(A(X)). Note that the multivalued map G:R, xX — P(X) is a strict
m-semiflow, i.e. (see Lemma2): G(0,,)=Id (the identity map),
G(t+s,x)=G(t,G(s,x)) VxelX, t,seR,. Further ¢ G will mean that
@ eD(&,) forsome &) € X.
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We recall, that the m-semiflow G is asymptotically compact if for any
sequence {@,},-1€ G {¢,(0)},s is bounded, and for any sequence {t,},;:

t, =+ as n — oo, the sequence {¢,(¢,)},> has a convergent subsequence.

Let us consider a family K, =U D(uy) of all weak solutions of

upeX
inclusion (3) defined on [0,+). Note that K, is translation invariant one, i.e.
Vu()eK,, Vh20 u,(-)eK,, where u,(s)=u(h+s), s>0.0n K, we set
the translation semigroup {T(h)};so, T(Wu(:)=u,(-), h=>20, ueK, . In view

of the translation invariance of K, we conclude that 7(h)K,_ <K, as #>0. On

K. we consider a topology induced from the Fréchet space cloe (R.;X). Note
that

f,(O)> f() in C*(R,;X)= VM >0

My /() = My f() in C([0,M ], X),

where II,, is the restriction operator to the interval [0,M ] [8, p.179]. We denote
the restriction operator to [0,+0) by II,.

Let us consider autonomous inclusion (3) on the entire time axis. Similarly
to the space C'(R,;X) the space C'*(R;X) is endowed with the topology of
local uniform convergence on each interval [-M,M]c R (cf. [8, p. 180]).

A function u e C'% (R; X) N L, (R; X) is said to be a complete trajectory of
inclusion 3) if Vhe R Il ,u,()eK, [8, p. 180].

Let K be a family of all complete trajectories of inclusion (3). Note that
VheR, Yu()eK u,()eK. We say that the complete trajectory ¢ eK is

stationary if p(t)=z forall t € R for some ze€ X.
Following [9, p. 486] we denote the set of the rest points of G by Z(G). We

remark that Z(G) = {(0,u)|u €V, A(u)+0aJ,(u)—2aJ,(u)>0}. Assumptions (A)
and (J) provide that the set Z(G) is bounded in X. Lemma 3 implies the

existence of a Lyapunov type function [9, p.486] for m-semiflow G.
We consider construction presented in Ball [9], Melnik and Valero [10]. We
recall that the set A is said to be a global attractor for G if: (i) A < G(¢,A),

Vit>0; (il) A is attracting set, i.e.
dist (G(¢,C),A) >0, t >+, V Ce p(X), (13)

where dist (D, E) =sup,.pinf,. E||d - e|| 18 the Hausdorff semidistance; (iii) for

any closed set Y < H satisfying (13), we have Ac Y. The global attractor is
invariant if A =G(,A), Vi=0.

Provide the main result of this paper.
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Theorem 3. The m-semiflow G has the invariant compact in the phase
space X global attractor A. For each y e K the limit sets

ay)={ze X |y(t;) > z for some sequence 7; ——oxof,

o(y)={ze X |y(;) >z forsomesequence 7; — +oo}

are connected subsets of Z(G) on which V is constant. If Z(G) is totally
disconnected (in particular, if Z(G) is countable), the limits z_ = lim w (),
t—>—0o0

zp = zEIPw w(t) exist and z_, z, are the rest points; furthermore, ¢(¢) tends to

arest point as t — +oo forevery ¢ eK, .

Proof. According to Theorems 1, 2 and [3, Theorem 2.7] we need to provide
that m-semiflow G is asymptotically compact.

Let &, €G(¢,,v,), v,€Cep(X), n=>21, t, >+o, n—>+o. Let us
check the precompactness of {£, },>; in X. In order to do that without loss of the

generality it is sufficiently to extract a convergent in X subsequence from
{Sn} nz1 - From Lemma 4 we obtain that there exist such {&, };>; and &€ X that

S

Let wus fix an arbitrary 7, >0. Then for rather big k21
G(,, ,v,, ) < G(T,,G(,, —Ty,v, ). Hence, &, € G(Ty,B, ), where

B

some {fk/_ ,,Bkj } o1 €48, 5B, Yis1 » Pry € X we obtain:

$n, > ¢ weakly in X,

L > az[é], . k—+oo. Show that a <[] .

nke

€ G(tnk —Ty,vy,, ) and skulla‘ g <t (see Lemma 4). From Theorem 1 for
>

& e G(Ty, By, ﬂkj — P, weakly in X, j— +oo. (14)

From the definition of G we set: Vj>1 é:kj =(uj(T0),u'-(T0))T,
Br, = u ()", &= (uo(T).ug(T))' s By, =(ug(0),up(0)",  where

9 =;u)" eC0,Ty 1 X), uy € Ly(0,T:V"), 1, €L, (0,Ty; H),

u' (1) + Bu'y (1) + Au; (1) + 1, (6) = 1,5 (1) =0, 1;;(t)€dJ,;(u; (1)),

i=12 forae te(0,7;).
Let for each # €[0,7}]

B
2
Then, in virtue of [5, Lemma 2.16], [7, Lemma 4.1, p.78] and [7, Lemma

@Z‘ﬁl (p;(6) + BH(p; (1)), forace. t €(0,T,), where

(p;(0)) = %Hcoj O, + 1 00) = T e @)+ £ 0.0 1),

3.1,p.71],
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H(p, (0) = J, (u (1)) %(lj,l (O (0) — T (1)) + %(Ij,z (O (1)).

From (9), (14) we have that there exists R>0: V>0 V¢e[0,T,]
“u} (t)”i[ +Hu j (t)”f/ <R Moreover,
u; >uy weakly in L, (0,7y;V), j — +o,
u; —>uy weakly in L, (0,7y;H), j— +o,
u; = u in L,(0,Ty;H), j >+,
l;; >1; weakly in L,(0,7;H), j >+, (15)
u’; —ug weakly in Ly(0,Ty; V"), j— +oo,

Viel0,Ty] u; (1) >uy() in H, j—+o.
Forany j=0 and ¢ €[0,7;]

1p; ()= 1(p; O™ + [Hep, (s)e ™ ds,
0

in particular
Ty
I(p;(Ty) =1(p; (0))e P 4 J. H(ep, (s))e P00~ g
0
From (15) and [5, Lemma 2.16] we have

Ty 7

I H(p; (s))e #10)ds — f H(po (s))e P 0™ ds, j— 400,

0 0

Therefore,

_ . Ty
lim I(p,(T) < Tim I(p,(0)e ™™ + [ H(gy (s))e P "0™)ds =
Jo>+oo J—>too 0

=1y (Ty)+ L@wle (0) - 1(9y (0»} e < Uy (Ty) + g™,
where ¢ does not depend on 7;, > 0. On the other hand, from (15) we have
lim I(p;(Ty))2
J—>t
1. 2 B,
> 1im |lp; (Ty)| .+, g (Ty)) = T2 (g (T)) + - (uty(Ty ), g ()
2 jortoo X 2
.. 1 2 1 2 -BT
Therefore, we obtain: Ea < E||§||X +ge 70 VT, >0. Thus, a < ||§||X
The Theorem is proved.
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APLICATION

Let us apply main Theorem 3 to Problem (2).
Corollary. Under listed above assumptions on parameters of Problem (2) all
statements of Theorem 3 for m-semiflow G defined in (12) hold.

In particular, for any iz € ¥ such that Air € H there exist such functionals
G, and G, such that Assumption (J) holds and Z(G) = {u}.

CONCLUSIONS

For one class of feedback automatic control problems in sence of the global
attractor theory the dynamics of solutions is investigated. In particular, we
concider the mathematical model of contact piezoelectric problem with
discontinuous interaction function which can be represented as the difference of
subdifferentials.

A priory estimates for weak solutions of studied problem in the phase spase
are deduced. This contributes to obtain the existence of the weak solutions and
their properties.

The existence of global attractor for generated multi-valued semiflow is
proved. The structural properties of the limit sets are studied. These results are
applied to the considered piezoelectric problem. Thus, it became possible to
forecast the long-term behavior of state function and to direct the investigated
system to the desired asymptotic level.

This research was partially supported by Grants of the President of Ukraine
GP/144/076, GP/F49/070 and Grant of NAS of Ukraine 2273/13.
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