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TIME SERIES FORECASTING
USING THE NORMALIZATION MODEL

VIKTOR BONDARENKO, VALERIIA BONDARENKO

Abstract. Empirical constructions of time series models based on the reduction of initial
data to normally distributed values have been proposed. The goal of a normalization
method is to construct an optimal forecast that is linear for the updated data, and the
forecasted original data is recovered through the inverse transformation. The different
variants of such transformations have been considered, including the reduction of initial
data to Gaussian fractional Brownian motion and a one-dimensional transformation using
a strictly monotonic function. The computational experiment based on real data, which
allows for a stationary model, confirms the higher quality of the forecast by the
normalization method compared to traditional models.

Keywords: optimal forecast, stochastic model, parameter estimation, fractional
Brownian motion.

PRELIMINARY INFORMATION AND STATEMENT OF THE PROBLEM

Time forecasting is defined as estimation the future values of some function of a
time variable based on known observations up to the current moment. Other-
words, if we observe the trajectory x(¢), 0<¢<T, then it is necessary to evaluate

the value x(s), 7 <s<T+rt. The estimated values are called forecasts and are
denoted by x(s), . The stochasticity of the trajectory is an essential circumstance,
so x(-) does not represent a deterministic function.

As arule, the trajectory values are observed at discrete moments

0<y<ty<..<t,;<t,<T,

that is, the terms of the sequence are known {x;,x,,...,x,}, where x;, =x(#;) , and

“future” values are to be assessed x(¢,.;),...,(t,.,) >

war ST+ 1.

T<t, <t,,<..<t
If it is known a priori that x(¢z) is an implementation of a random process &(¢),

which corresponds to a finite-dimensional distribution

X1 X2 Xm
PEEW) < X s &) <Xk = [ diy [ @y [ fo oot Y15 Y200 A

—o0 —o0 —o0
with a density f,,(4,...,4,,, X1, X,,) = fn(X15...,X,,) , then the optimal forecast
for r steps is the conditional average:

A

anﬂ
: =B(i1:8n425- 58 &1 = X150 .6, = X,) = (X1, X550, X)), (1)
&I’l‘*"’
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& = &t j)'
The coordinates of the conditional mean are calculated by the formula:

o0

A

v = | oo [ YPGB Y2 Yy X X )y

—00 —00

where the conditional density

P(V1sV2seees Yy XinerasXy) =

-1
= fn+r(x1’x2"'"xn’yn+1"'-’yn+r)x(fn(xlax2r--axn)) D
o0

o0
Jn(X1,%0,..,%,) = j I Fnar(X15X0,0003X,, 20,00, 2,)d2y .. d2,, .

Optimality means that for random vectors
&1 §n+1
E=| |, n=| :
S Cntr
and the fair ratio

En-g(§)" =minEn-h(§)*,

where the function g is defined by the equality (1), ||-|| is a Euclidian distance in R" .
As a rule, the density of the distribution f,, is unknown, and to calculate the

forecast, it is necessary to create a stochastic time series model {x;,x,,...,x,},

that is, to construct a description of the relationship between the values of the
series based on previous observations.

This model can be described
Eak = \P(él 9o -9E_>k—1 78) s

where {&,,&,,...,§,} are the sequence of random variables for which the abserva-
tion x; 1is assigned by some value &, and € is a random vector. Note that

standard models do not always take into account the specifics of observations and
the corresponding forecast turns out to be far from reality (as shown in the
example below).

The forecast constructions based on traditional time series models are
discussed in detail in the reference [1].

The preferred option of forecasting is a situation where the time series

admits a Gaussian model, i.e. [E’J ~ N(O,Q), where the matrix Q is depicted in
n

0= A B
¢ D)
and block elements 4, B,C,D are determined by the ratios:
@ = e b, 12/, k< nesE~N(0:4);

the form of

dj=Enmg =EE,. ;&> 1<), k<ren~N0;D)
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and the elements of matrix B,C, B=C * are represent the mutual covariance of
& and 1, so
by =EE€ &y 1< j<nl<k<r;

Cix =ES, &, 1sj<srl<k<n.

In this case, the optimal forecast is linear and is determined by the formula:

A=Emlg=cac. )

In particular, the sample {x;,...,x,} can be considered the values of the frac-

tional Brownian motion By (¢) , which is defined as a Gaussian random process
with characteristics

1
EB,, () =0, EBH(nBH(s)=§(M2H-+pr—|t—42H),

where 0< H <1 is called a Hurst exponent.

The properties of fractional Brownian motion are discussed in [2]. The
experience with temporal data shows that identifying a series as fBm values is a
rather rare phenomenon.

TIME SERIES NORMALIZATION METHOD

The idea of the method consists of transforming the original data {x;,x,,...,x,}.
into Gaussian {uy,u,,...,u,} ..

In some cases, the original data can be converted to the fractional Brownian
motion values.

Let there be a continuous one-to-one mapping

0:R" > R", 0(x),%9,...,X,) = (U, Us,...,u,)

Uy,
such that the increments of the transformed data
ZI=U, Zyp T Uy — Ul Zyy = U, — U,

form a stationary sequence (i.e., they admit a stationary model).
The statistics

) 12 ) 1 n—1
c-=—>z; and 9=—Zijj+1
M k=1 n=155
are consistent estimates of the variance of the increments and their one-step

covariance (|3, 4]).
Then consistent estimates of the correlation coefficient and Hurst parameter
are calculated by the formulas:
0 1 In(p+1)

=—, H=—+
=2 2 2in2

The necessary conditions for the hypothesis of “data {u;,u,,...,u,} form the

values of fractional Brownian motion” is the fulfillment of the limiting relations
for the statistics 4,,, B,, D,, F,, which are defined by the following relations:
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n
AnzlLZMk 1zk—> 3 He(O;lj;
}’lG k=1 2 2

1 & 1
—SZ lzk—>3n,n N( )

"2H +2

€ [O;lj ;
2
1

n
Dnz %ZMk 1zk—)zg , G~ N(0;1), He(% 1)
n’ k=1

B 1 1 & 3 I 11
”__H_3§Zk_)g’ €| 5

The proof of the limit relations is contained in [5]

The standard algorithm for testing the specified hypothesis using known H
and o is a following: let us assume that the hypothesis is fulfilled and we set the
significance level o with comparing the value of the statistic with the tabular
value  where F(B)=1-a.

In particular, for the marginal distribution function of statistics D

(H>0,5):
/ 2 . .
F(x)= ZCD[ xgj —1,where @ isa Laplace function.

Corresponding to the level of significance o =0,05 the critical value =6,

n

and the hypothesis is accepted if 0< D, <6.
If the hypothesis u; = By (t;) is true, then the optimal (linear) forecast for
{u,11,U,40,..-,Up,} 1n n steps is calculated by the formula (2):

u u
n:+l _CA-I :l Q_ 4 B
N B e \c D)
Urp u,
g =G+ |-k, 1<), k<2n,

and the forecast of the primary variables

A A 1, A A
(Xpi1oe s X0) =@ (Upyise-osllny,) -

Note that the choice of transformation ¢ is a rather cumbersome procedure.

Let us consider another normalization method — the one-dimensional
transformation of the real data u;, = ¢(x;) .
o(x) =0 (F.(x)), 3)

1 2 o : :
where ®(x) = j exp {— —} dz , F; is a distribution function corresponding
to the sample {x;,x,,...,x,}.
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Thereby, {u,...,u,} is a sample from the general population N(O,l) and the

proposed procedure requires stationarity in the narrow sense of the real data and
requires an assessment of their distribution. The sample size should not be large
to prevent the detection of non-stationarity.

Actually, {x;,x,,...,x,} represents a sample of different random variables
{&(1),E(t,),...,&(t,)} with the same distribution F. This disadvantage is partially

compensated by the dependence of the obtained data, which is determined by
their correlation matrix.

Let us note the following property of the transformation.
Proposition. Let ¢ is a strictly increasing function Z;(t) is a stationary
process in the narrow sense, i.e.

P{E_:(Zl) < xla"'aE_:(tn) < xn} = F(xla' '-7xnat2 _tl,'-'atn - Zn—l) .
Then the process 1(¢) = @(&(¢)) is also stationary in the narrow sense.

Proof. Under the condition of stationarity
P{E_:(Zl) < xla"'aE_:(tn) < xn} = F(xla"-axnatZ _tl,'-'atn _Zn—l) .

Distribution of the process 1(¢) :

Pio(E(t)) < xp,.., 0(&(,)) < x, 1 = P{G(H) < y15e- 5 6(8,) < Yy) =
=Fe e Vno by —tsesly = 1,1), Y= (P_l(xj)
also satisfies the definition of stationarity.

Let us formulate a modeling and forecasting algorithm using transfor-
mation (3).

1. Checking the data for stationarity, for example, using the Dickey—Fuller
criterion and determining the size of the training sample (in the case of checking the
adequacy of the model, determine the size of the training plus the predicted sample).

2. Estimation of the distribution function F; of random value § by the
sample {x,...,x,}.

3. Construction of the sample {u,...,u,} . from a normal population N(0,1)
by the formula

e =7 (Fy ().
4. Calculation of the sample correlation coefficients

1 "

pP;= .zuk”kﬂ"
n=7 k=1

with consctruction of correlation matrix Q and defining the forecasting horizon 7.

5. Construction of the forecast {i,,, #,,,} of transformed data by the

formula (2).

6. Calculating predicted values {X,, _X,,,} of primary data according to

n+r

the formula

A

£=07' @) = F (@) . Ryproeoon Ry
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EXAMPLE OF FORECAST CALCULATION

The following example illustrates the application of the proposed model:

The meteorological data files Precipitation—Florida Climate Center.

The sample size is determined by stationarity, which is tested using the
Dickey—Fuller criterion.

In the given example, stationarity occurs in the interval x; —xy; let us put
the data into the training sample x; —x;,. The data values and their graph are
shown in Table 1 and Fig. 1, respectively.

Table 1. The value of the series x; — xy

X X2 X3 X4 Xs X6 X7 X8 X9 X10
3.03 3.43 3.54 2.98 2.13 -2.62 | —0.61 | —0.15 | -2.15 | -2.65
X1 X12 X13 X14 X15 X16 X17 X18 X19 X20
-3.58 | -2.13 | -2.32 | =243 -2.8 242 | -3.15 | -2.62 | -2.81 | -2.46
X21 X232 X23 X24 X25 X26 X7 X28 X29 X30
-1.2 -0.33 | -1.81 | -2.18 -0.2 0.6 3.07 5.48 6.34 8.81
X31 X32 X33 X34 X35 X36 X37 X38 X39 X40
6.2 4.04 2.86 1.53 0.702 1.7 3.72 5.33 6.27 3.32

10

527293133353739

Fig. 1. Meteorological data x; = x(;)

If we consider the given data as values of one random variable, then from the
analysis of the sample {x;,x,,...,x,} the hypothesis follows that this random
variable & is distributed by Gumbel’s law:

A—Xx
Fe(x)=exp {— exp[ B J} ,
with the moments:

EE=N+By, y=0,577 is a Euler’s constant,

© 2
E&? = [(A—Plnz)’e dz =%132 + O+ By)?,
0
EE = T(x ~Blnz) e *dz = (h+Py)’ +%B2n2(k +By)+28C(3),
0
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C(s) is a Reamann zeta function, {(3) ~1,202.

The values of sample moments:

_ — 1 30
¥=-0.037~0, x> =—> x; =10.19;
305
513 5
x> =—)>» x;=3376,

lead to estimates of the distribution parameters [=2,49; A=-144, so

x+1,44
F.(x)= - - - .
¢ (x) =exp { exp ( 2.49 j}

Density distribution graph

| x+144
xX)=—— exp| — . F.(x) shown in Fig. 2.
S D=7 p( 2,49 J e(x) shown in Fig

Je 016
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Fig. 2. Density distribution f; (x)

Let us construct the transformed data using the formula

1,44
—! —exp| — TN gy,
Uup [eXp{ eXp[ 2.49 (k)

where the values d)*l( ;) are calculated using the Laplace function table. The
result of the calculations is given in Table 2.

Table 2. Transformed data u; —uy,

U Uy U3 Uy Us Ug Uy Ug Ug Uio
1.02 1.12 1.14 1.01 0.8 —-0.84 | —0.03 0.13 -0.63 | —0.85
un Uy K] Uiy Us Uie U7 ug U Upo
-1.32 | -0.62 | —0.65 | -0.75 | -0.92 | -0.75 | -1.09 | —0.84 | —0.92 | —-0.76
Upy Ups Uss Uny Uss Use Us7 Usg Ung Uzg
-0.25 0.07 | —-0.49 | —0.64 0.11 0.37 1.03 1.56 1.72 2.13
Usg Uz Usz U3y Uzs Uz Uz Usg Uzg Ugo
1.685 | —-1.25 0.98 0.64 0.4 0.69 1.18 1.52 -1.71 1.09
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The evaluation of correlation coefficients
30—

Z UpUpy -

PI730-;
Leads to the results and for k£ >7 the coefﬁc1ents pr ~0.
P1 P2 P3 Pa Ps Ps P7
0.77 0.57 0.43 0.27 0.144 0.036 0.02

The elements of the matrix O are determined by the ratios:

g = P i —k[<7,
K0, |-k,
The forecast of transformed data in 7 steps is calculated by the formula (2)

1<j, k<37, po=1, ap=qp, 1<j, k<30.

13 U
=c4™
ti37 U3p

The forecasting results are shown in Table 3.

Table 3. The values of forecast in 7 steps

Uz Uz Uss U3y Uss U3 Uz;
1.685 1.25 0.98 0.64 0.4 0.69 1.18
Forecast
Uy} i3 Us; U3y Uss Usg U3
1.682 1.155 0.838 0.443 0.205 0.6 0.32
X3 X3 X33 X34 X35 X34 X3
6.169 3.595 2.267 0.848 0.08 1.396 0.44

where the forecast of the initial data

X31 — X37 1s calculated by the formula
Fo=07' W) = FN(0@,)), F(y)=-249In(-Iny)-144.

Let us compare the quality of forecasting using a model, which have constructed
using the normalization method and four classical discrete time series models.

Table 4. Comparison of forecast quality

Time series values x;, —x;;

Actual data X31 X3 X33 X34 X35 X36 X37

6.2 4.04 2.86 1.53 0.702 1.7 3.72
Forecast The results of forecast

data X3, X3, X33 X34 X35 X36 X37

Normalization | ¢ 4 ¢q 3.595 | 2.267 | 0.848 | 0.08 | 1.396 | 0.44
method

ARMA 7.16 9.53 9.902 | 7.286 | 9.672 | 10.06 9.9
Point Forecast 6.703 5.163 389 | 2,833 | 1.927 | 1.142 0.434
GARCH 8.379 8.908 7.437 | 7.565 7.9 8.02 9.21
ARIMA 8.652 8.063 7.44 6.85 | 6.328 | 5.808 4.35
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CONCLUSIONS

Given the stationarity of the time series, modeling using the normalization
method, which is defined by the relation (3), provides higher forecast quality
compared to traditional forecasting methods.
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IMPOTHO3YBAHHS YACOBOI'O PAJIY 3A MOJEJUIFO HOPMAJI3AIII /
B.I'. bBonnapenko, B.B. bongapenko

AHOTalisi. 3anpOIOHOBAHO EMITIPHYHI KOHCTPYKII MOIENCH Y4acoBOTO psmy 3a
CXEMOIO 3BEJICHHS NEPBHHHUX JaHHUX 10 HOPMAJIBHO PO3MOAIICHUX. METO Takoro
MeToJy HopMallizamii € 1moOyxoBa ONTHMAJIBLHOTO IIPOTHO3Y, KU IJIsI OHOBJIEHUX
JaHUX € JiHIIfHUM, a IPOTHO30BaHi MEPBUHHI JaHI BIHOBIIOIOTECS Yepe3 odep-
HEHe NepeTBOPeHHs. PO3IIsIHyTO BapiaHTH TakMX IEpPEeTBOPEHb — 3BEICHHS Hep-
BHHHHX JIaHUX JI0 TayCiBChKOro ()pakTajbHOr0 OpPOYHIBCHKOTO PyXy Ta OJHO-
BUMIpHE IIEPETBOPEHHS 3 BHKOPHUCTAHHAM CTPOr0 MOHOTOHHOI (yHKII].
OO6uucnOBaJIbHIUN eKCIEPUMEHT Ha 06a3i peanbHHUX JaHUX, L0 JAOMYCKAOTh CTallio-
HapHY MOJEINb, MATBEPIKY€E BHUILY SKICTh MPOTHO3Y METOAOM HOpMai3amii mopiB-
HSHO 3 TPaJULIHHUMHI MOJICIISIMH.

Ki11040Bi c;10Ba: ONTHMAaNbHUIN IPOrHO3, CTOXACTHYHA MOJENb, OLiHIOBAHHS Iapa-
MeTpiB, ppakTanabHul OPOYHIBCHKHI PyX.
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