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STRATEGY FOR ENSURING ASYMPTOTIC CONVERGENCE
OF THE PROCESS OF NON-LINEAR ESTIMATION
OF DYNAMIC OBJECT PARAMETERS

A. SILVESTROV, M. OSTROVERHOYV, L. SPINUL,
0. KHALIMOVSKYY, H. VESHCHYKOV

Abstract. The article considers a step-by-step strategy of sequential use and adjust-
ment of a parallel model to an object of identical structure with orthogonal opera-
tors, a series-parallel model to an object with the connection of operators of a certain
type for orthogonal approximation in order to obtain asymptotically unbiased esti-
mates of coefficients of a structurally identical to a dynamic object of a mathemati-
cal model under conditions of noise of measurements of the initial variable of the
identification object and non-convexity of the proximity functional of the initial
variables of the object and the model in a space of coefficients of the object’s
mathematical model. Structural diagrams of each stage of identification are given
using refined parameters and the structure of the model of object. This algorithm
was implemented to identify the parameters of the mathematical model of aircraft,
provided that the sample of experiment data is limited and there is of the initial
a significant range of deviations of state variables from the basic mode.

Keywords: non-linear estimation, identification, convergence of estimation algo-
rithms, optimization.

INTRODUCTION

An important place in the problems of non-linear programming (identification
[1-8]) is occupied by the form of a proximity functional of initial variables of an
object and a model, whose physical parameters are optimized at the extremum
(usually the minimum) of the variable functional. This functional is simultane-
ously a function of physical parameters of the model being optimized. If the
“input (x) — output (y)” mapping of the object can be represented by the following
differential equation:

n n—1

dy ~dy dy
a ta——+..+a, ;—+a,y(t)=
0 " ldt”_l -1 (1)
d"x d"™'x dx
=p +b +ot b, —+b,x(1), 1
0w T -1, (1) (1)

where a;, i=0,n; bi’ j=0,m are parameters to be determined using entries

y(t), x(t), k=1, N, considering that y(¢;) is measured with uncorrelated
noises ((#;); then desired coefficients a; of the model (1) enter the equation of
error g(¢;) between y(#;) and output variable y,,(#,) non-linearly, since they
are in the denominator of the model operator W, (p):
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e(t) = y(t) =Wy (p)x(1) ,

where WM(p)=M p=i, b(p)=bop" +bp" " +..+b,, a(p)=ayp" +

a(p)’ dt

+ap" "+ +a,.

Accordingly, parameters a; non-linearly enter mean square g2 of error

e(t;) (both for the functional of y(#;), v,,(¢;) and the functions of parameters

a;, b;), violating the elliptic form of dependence ¢? on deviations Aa; of esti-

. . *
mates a; from their optimal values a; :

(a;,b;) —argmine? . )
a,-,bj

Violation of ellipticity and strict convexity of function sz(al.,b ;) (the “ra-
vine” effect) significantly complicates the recurrent process of convergence of

parameters a;, b; with their optimal values a;-k ,b; that satisfy the condition (2).
Furthermore, the form of function sz(al-,bj) significantly depends on the

bandwidth of input signal x(z), because e is simultaneously a functional of
¥(t), v (t), which, in turn, depend on input stimulus x(¢) . For the given x(¢)
and the structure of the model (1), the key to successful optimization of the re-
laxation process for convergence of the model (1) parameter estimates with their

optimal values (2) can be a strategy of using a set of different models and a series
of their connection and identification, which ensures convexity and ellipticity

&°(a;.b;).

FORMULATION OF THE PROBLEM

While using an object-parallel:

e model with a structure identical to the object (1);
a(p) 4 b |
c(p) c(p)
the object (where c(p) is a filter of the degree p exceeding the degree n of poly-

e model with a series-parallel connection of operators

(0]

nomial a(p), which ensures the correctness of differentiation operation y(¢);

e as well as model with orthogonal parameters connected in parallel to the
object; it is necessary to organize the sequence of their connection and adjustment
in such a way as to ensure strict convexity and ellipticity of proximity functions of
the object and the model being optimized, and thus, the convergence of the relaxation
process for identification of the model (1) coefficients under the condition (2).
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Strategy for implementing the condition of guaranteed convergence of model
(1) parameters with their optimal values (2)

The strategy consists of four steps, where Steps 2, 3, 4 are to be repeated until
condition (2) is met.

Step 1. Identification (Fig. 1) of weight coefficients 3; of operators W;(p)
of the model (3).

An equation of the model parallel to the object:

Y ()= 2B W(p) - x(0)} =2 B (x(1)) 3)
i=1 i=1
where @;(x) =W;(p)x(¢) are linearly independent functions of time ¢.

x(2)

A 4

Object (1)

()

y

Model (4)

@
[ Evaluator

Fig. 1. Approximation of the “input-output” mapping (1) of the object in the model (3)

Operators W;(p) transform input stimulus x(¢) into a system of linearly in-
dependent functions @;(x(¢)). If x(¢) is close to “white noise”, then, using, for
instance, Lager functions as these operators

PPN
wi(py =21 (4)
(p+7)

(where 7y is the operator parameter), we obtain a system of mutually orthogonal
functions ;(x(¢)). Linear independence, and even more so, orthogonality
@;(x(¢)) guarantee strict convexity and ellipticity of mean square g2 of error
e(t;) [1], [2]. In the “off-line” mode, the determination of the model (3) coeffi-
cients f3; can be one-step, if we have a data sample x(¢;), »(¢,), k=1,M . Then

estimates [3,- of coefficients [3; are determined by the least squares method (LSM)
under the condition

f% = argrninL AZ/[:sz(k) ,
B M5
where g(k) = y(k)— Y B;9; (x(1)) .
i=1
Meaning, = (¢"¢) "'oY =(p @) o (¥ +0).

LSM estimation [3 of the vector of coefficients f3;, i = I,_n will be unbiased,

i°

since noise {(f) is uncorrelated with o,(¢), and if £(¢) is a Gaussian “white

noise”, then estimate 3 will have minimal variance. If x(¢) is a Gaussian “white
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noise”, and operators W;(p) are type (4), then matrix (pT(p will be diagonal, and

each component ﬁi of vector ﬁ is determined independently:

M
>0, (k) y(k)
ﬁz’ ==l

&
> 97 (k)
k=1
In the “on-line” mode, the recurrent process of adjusting coefficients 3; of

the model (3) is done through the gradient procedure:

% = e, (t) .

If A; is limited, the process of approximating estimate f&,-(t) to the optimal
stationary value is exponential, which achieves an exponentially weighted averag-
ing of the current value 2(¢).

Resulting from operation of the system (Fig. 1) in the first step, with the lim-
ited dimensionality »n of the model (3), we have a close approximation of mapping

x(¢) onto y* (¢) in the model (3) (non-parametric identification). In this case, the
structures of the desired mapping (1) and the model (3) are different, but y,, no
longer contains noise (%) .

Step 2. Approximation of mapping x(¢) onto J,,(¢) that uses the series-
parallel model (Fig. 2) of the equation (1).

x(1) Y ()
» Model (4) >
\4 A
b(p) a(p)
1 <) o [

£, (1)

b a
- a,b
Os ) Evaluator Os .
ob o4

Fig. 2. Approximation of mapping x(¢) onto )7;,[ (¢) in the model (1)

Total error equation:

a(p) b(p)
g,(t)= Yy () - x(1), 5)
T e(p) c(p)
where c(p) is a filter polynomial with degree exceeding polynomial degree

a(p) ; polynomial structures a(p) and 5( p) are identical to the polynomial
structures a(p) and b(p) of the object model (1). Then, depending on the “on-
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line” or “off-line” modes of minimizing the mean square of total error &,(¢), by
means of the adaptive circuit, the least squares method, or the gradient method,

respectively, the optimal values of coefficients a,, i=1,n, b s J=1,m are calcu-

lated. Absence of “noise” in signal J,,(¢), and linearity of dependence ¢,(¢) on

coefficients q;, b ; being adjusted guarantee that their estimates are obtained.

However, their values are not yet true values a;, b; of the object model (1). This
is due to the proximity of mapping y*(t) in the model (3).

Step 3. Approximation of mapping x(¢) onto y*(t) in the model, in the
b(p)

A

form of a composition of the series connection of model obtained in the

a(p)

previous step, and the orthogonal model (3) (Fig. 3).

x(t) R

Object (1)

A

()

b0 Pl S )

a() i=1

Iz
B B
B Evaluator <

Fig. 3. Structure of the identification system in Step 3

Y

bip)

In this step, an inaccuracy of mapping x(¢) onto y*(t) in the model )
a(p

n
compensated by adjusting coefficients f3; of model ZB,-W,-( p), which is turned
i=1
b(p)

on in series with model ﬁ (Fig. 3). The adjustment process [3;

A 1

ap
the process in the Step 1 (as per LSM in “off-line” mode, or gradient method in
n
“on-line” mode). Now, however, model ZB,-W,-( p) should map not the mapping
i=1
x(t) onto y*(t) , but only mapping yL (¢) onto y*(z) , which is much simpler,

is similar to

since y;kw (?) is already more or less close to y* ().
Step 4 repeats Step 2 (Fig. 2), but for mapping x(z) onto y* (¢) clarified in
n n
the model Y B;(p) . Theoretically, if in Step 4 n of the model Y B,W;(p) is
i=1 i=1
unlimited, we will already get estimates a;, bAj of parameters a;, b; of the iden-

tification object’s accurate model (1), which will be unbiased by noise () .
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In practice, if n is limited, Steps 2—4 are repeated, and y(¢) gradually ap-

proaches y*(t) of the object, coefficients B; of the model (3) approach zero, ex-
cept for B, which approaches one with the unit operator W,(p)=1, and coefti-

cient estimates 4; , b ; approach true values a;, b; of the model (1).

A flow chart of the strategy of using three types of models is presented in Fig. 4.
We will consider the feasibility
( Start )

of using the proposed strategy on the
example of identifying coefficients of

v the transfer function of an aircraft in
Input longitudinal short-periodic movement
x(k), y(k) [4]. The problem of identification lies

in a concept of the transfer function
being valid only under conditions of

Y

Caleulation B linearity and stationarity of the map-
. i ping of the control stimulus (deviation
in the block 1 A8, (t) of the altitude control) in the
deviation of attack angle a(z) of the
Cal "1 . angle between the longitudinal axis of
alculation X i N

a;b; the aircraft and the direction of the

in the block 2 oncoming air flow.
R Short-periodic movement means
v movement in a short time interval dur-
Calculation B; ing Whjch factors not taken into ac-
in the block 3 count in model (1) hardly change.
These include non-linearity, non-
stationarity, speed changes, height,
v weight, and dimensions of the aircraft,
Calculation etc. Therefore, the mathematical mod-
. ai’bj el of the aircraft movement will be
in the block 4 more accurate, the smaller the time
and deviation of the variables from a
certain basic balancing mode are. If
Fstimating the the time and range of deviations of the
. aircraft state variables from the basic

difference

mode tend to zero, the model (1) tends
to being perfectly accurate. But in re-
ality, the measurements of the aircraft
state variables give not only accurate,
but a random component of noise.

Then, when the range of the variable
( End ) deviations decreases, the ‘“noise-to-
signal” ratio increases, and, in a lim-
ited time interval, the variance of es-
timates of aircraft parameters will in-
crease unacceptably. Desire to reduce impact of non-linearity on a linearized air-
craft model leads to an increase in the “noise-to-signal” ratio and, as a result, an
increase in the random component of the error in estimating the parameters of the
mathematical model (MM) of the aircraft. This range increase leads to a shift in
the linear MM parameters’ estimates due to the influence of non-linearity of the

A

A —Ag b, —by_

Less given error

Fig. 4. Flow chart of the identification algo-
rithm for model (1) parameters
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aircraft characteristics. If it is impossible to fulfill other conditions (a large sample
of experimental data and deviation range of the state variables from the basic
mode), the condition of ellipticity and strict quadraticity of the error functional
between y(¢) and y,,(?), as a function of the optimized parameters of the aircraft

MM, allow to successfully solve the problem of identifying parameters a; and b ;

of the MM on the level of their proximity to real physical values a; and b; of the

accurate MM (1).
Let’s suppose for small deviations from the basic longitudinal horizontal
movement the aircraft MM looks as follows:

d*>y"  d .
d; +a1%+aoy (t)=bx(t),

where y*(t) is the deviation of attack angle o(¢), and x(¢) is the altitude control

*

step deviation 0, . Desired aerodynamic coefficients are a; =1c, ay,=3, b=0,5.

Reaction y* (¢) to a single step stimulus x(¢) is shown in Fig. 5.

x, y* 4

yH(t)

x(?)

\4

1 2 3 4 5
Fig. 5. Reaction y"(¢) to step impact and x(¢)
The test corresponds to real conditions of aircraft identification: observation
time 7 =35s, discretion step Af in time was 0.02 s. Meaning, number M of
discrete values 7, was 100. Measurements of attack angle y(¢) in 100 discrete-

times ¢, consist of the exact value y* (t;) (Fig. 5), and adaptive noise in the form
of Gaussian “white noise”. Input stimulus x(¢) is measured accurately.

The computer modeling was carried out for various noise y(¢f) to signal
y* (¢) ratios, therefore, due to a limited data sample and the presence of random

noise, estimates 4, 4, b are random (Table). The estimates were obtained using
the series-parallel model (Fig. 2, Step 2) and the three models strategy (Figs. 1-3,

Steps 1-4). The model (3) uses three type (4) operators, while the model (5), as a
filter C(p), uses operator

Wr(p)=(p +5p” +6p+7)7",
which significantly smooths noise components (¢) .

Table shows estimates a,, 4, b obtained through a one-step algorithm that

uses only the series-parallel model (Step 2), and a multi-step (Steps 1-4) algo-
rithm that uses the proposed strategy (Fig. 4).
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The estimates, obtained by the one-step and multi-step algorithms

ag a b
Noise/signal
Step 2 | Steps 14 Step2 | Steps 14 Step 2 Steps 14

0 3 3 1 1 0.5 0.5
0.5 3.15 3.1 1.01 1.1 0.517 0.516

1 2.69 3.15 0.71 1.14 0.6 0.52

2 1.56 2.82 0.16 0.96 0.49 0.48

3 1.39 3.22 0.02 0.95 0.53 0.58

Therefore, despite a random component of estimates a,a,, b, associated

with a limited data sample and a significant noise {(#;) to signal y*(tk) ratio, in
the dependences a; and a, on the noise-to-signal ratio, we can observe a pattern
that has a statistically significant value, i.e. a significant decrease in estimates g,
and a, with an increase in the noise level {(z;) (Fig. 6).

A

| noise-to-signal

>

1 2 3
Fig. 6. Dependence and on the noise level {(¢) in signal y(¢)
al 4o
To explain the effect of lower estimates a; and q,, we will consider a

structural diagram with a series-parallel model (Step 2), where an object is
connected instead of a model (Fig. 7).

The LSM evaluator determines estimates 4, &1,5 of parameters a,, a;,b

under the condition of the minimum mean square Ei of error &,(z;) [5; 6], i.e.,
under the following conditions:

TR ) ©
1 og (tk)
Nk 1 y(k) =0, (7
1 y( k)
V& &, () ——=—=0, (®)

Total error:

dJ/(tk) d* y(fk)
dr’

&, (1) =a P (1) +4a ~bi(t;). 9)
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40)]
x(1) b () »(0)
| pP+ap+a, "
Y Y
1 1
c(p) 4 4 c(p)
x(t) > b ag [« (0
7 7
A
a, p [«
g,() !
) e
) e, ] %, )
—> Evaluator .
l l l Og (1)
booay @ O

Fig. 7. Evaluation of object parameters using the series-parallel model

Error sensitivity functions for the relevant parameters:

o, (t)
L=k,
o (%)

o (1) . - .
2= ) =5 @) + 8,
do
Oy () _ diey) _ 5" (1) , d(ty)
oa, dt dt dt

In condition (7), considering expressions (8) and (9), there is no square of
noise £(¢). If (9) is weakly correlated with the inaccuracy of determining coeffi-
cients a, and g, in (9), estimate b of parameter b is almost unbiased (see Table,
Step 2).

It is different for estimates g, and q, . In equations (6), (7), there is a square
of noise {(#) or its derivative. This leads to a bias in estimates d,and 4, propor-
tional to the noise level {(¢). This is the main drawback of the series-parallel
model (Fig. 7), which is eliminated by the proposed strategy (see Table, Steps 2—4).

CONCLUSION

In order to guarantee unbiased physical parameter estimates for mathematical
models of dynamic objects in real conditions of limited data samples and dynamic
ranges of state variables of an object, an effective strategy consists of a step-by-
step use of a parallel model with orthogonal operators, a series-parallel model for
approximating the orthogonal model, and a subsequent use of these models for a
more accurate “input-output” mapping of the object and, consequently, an unbi-
ased estimation of desired dynamic object parameters.
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CTPATEI'IA 3ABE3IIEYEHHS ACHUMIITOTUYHOI 3BI’KHOCTI IPOLECY
HEJIIHIMHOI'O OIIHIOBAHHSI ITAPAMETPIB JTUHAMIYHUX OB’€EKTIB/
AM. CimbeectpoB, M.S1. Octposepxos, JLYO. Crinyi, O.M. Xanimoscekuit, I'.B. Bemukos

AHOTalisi. PO3risHyTO MOKPOKOBY CTpaTeriro MOCHTiJOBHOTO BHKOPHUCTAHHS 1 Ha-
JIAIITYBaHHS MapaleNbHol 10 00’ €KTa MO IJeHTHYHOI CTPYKTYPH 3 OPTOrOHAIIb-
HUMH OIIepaTOpaMH, MOCIIiI0OBHO-TIApANIEILHOT MOJENi 10 00’€KTa 3 MiAKIIOYSHHIM
orepaTopiB MEBHOTO THITY IJIsi OPTOTOHAJIBHOI alpOKCHMalii 3 METOI0 OTPUMAaHHS
ACHMITTOTHYHO HE3MIIICHUX OIIIHOK KOC]IiIlli€HTIB CTPYKTYPHO iJICHTHYHOI IO JHU-
HAMIYHOTO 00’€KTa MaTeMaTHYHOI MOJEIi B YMOBax 3alllyMJICHOCTI BUMIPiB BHXi[-
HOI 3MiHHOT 00°ekTa igeHTrdikanii i HeBUITYKIOCTI (yHKLIiOHANA OIM3bKOCTI BUXI-
HUX 3MIHHHX 00’€KTa 1 MOZENi B MPOCTOpi KOEQIIieHTIB MaTeMaTWyHOi MoZemi
00’exkta. HaBemeHO CTPYKTYypHI CXeMH KOXKHOTO €Tamy igeHTH]ikamii 3 BUKOpHC-
TaHHSIM YTOYHEHHX NapaMeTpiB i CTPYKTypH Mozeni 00’ekTa. AJTOPUTM pealtizoBa-
HO 1 ineHTH(IKanii mapaMerpiB MaTeMaTHYHOI MOJENI JiTaJbHUX arapaTiB 3a
YMOBH OOMEXEHOCTi BHOIPKM JaHUX EKCIICPHMEHTY 1 3HaYHOIO Miala3oHy BiIXH-
JICHHsI 3MIHHHX CTaHy BiJ 6a30BOT0 pexumy.

KnrodoBi cioBa: HenmiHiliHe OIiHIOBaHHS, ineHTHQIKamis, 30DKHICTh aNrOpUTMIB
OI[IHFOBAHHS, OIITUMI3aI[is.
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