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Abstract. This paper presents a concept for a cognitive AI platform that enables 
autonomous navigation of distributed multi-agent systems, exemplified by UAV 
swarms. The proposed architecture integrates a ground control center with cognitive 
services and a multi-layered onboard subsystem, supporting a continuous loop of 
learning, adaptation, execution, and behavioral model updates. Several core mission 
scenarios are introduced,  such as reconnaissance, search and rescue, target neutrali-
zation, and deception, showcasing the swarm’s ability to operate autonomously and 
in a decentralized manner, even under adversarial conditions. An example of a 
search and rescue mission implementation plan using a cognitive platform that in-
cludes adaptive planning, SLAM navigation, swarm coordination, and deep object 
recognition is presented. The results were partially supported by the National Re-
search Foundation of Ukraine, grant No. 2025.06/0022 “AI platform with cognitive 
services for coordinated autonomous navigation of distributed systems consisting of 
a large number of objects”. 

Keywords: artificial intelligence, UAV swarm, autonomous navigation, cognitive 
platform, multi-agent systems, behavior trees, digital twin, SLAM. 

INTRODUCTION 

In modern conditions of increasingly complex combat environment, active elec-
tronic warfare, and loss of reliable satellite connection network, a critical need 
arises for creating autonomous, decentralized control framework for distributed 
systems, particularly swarms of unmanned aerial vehicles (UAV). In this context 
the development of a cognitive AI platform, capable of guaranteeing the coordi-
nated navigation of a multitude of agents prohibited from interaction with a cen-
tralized control point or external infrastructure, becomes especially important [1–3]. 
This kind of environment requires not only sufficient autonomy level of individ-
ual agents (drones), but also a wholesome approach to the organization of their 
collective behavior implemented through cognitive self-learning, self-organization, 
adaptation algorithms, and resilient inter-agent information exchange. The theoretical 
and methodological basis for constructing this kind of platform was described in 
[4–10], in particular the impossibility of full consistency of agents: swarm agents 
cannot have a fully coordinated movement direction on spherical surfaces (as well 
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as on large single-connected compact manifold surfaces without edges, including 
geoids), which compromises at least ant colony algorithms, requiring the selection 
of special points as regrouping zones [5, Theorem 1]. 

The AI platform for autonomous navigation of distributed multi-agent sys-
tems is viewed as an integral architecture that combines two closely intercon-
nected components: the on-board component functioning directly at each of the 
autonomous agents, particularly the UAV, and the ground control center that pro-
vides learning, simulation, validation and strategic system control. Both compo-
nents are functionally and logically interconnected, and together they form a cog-
nitive AI platform in a broad sense – as an intellectual, self-learning architecture, 
capable of adaptation to the changes in environment, and self-improvement on the 
basis of accumulated experience. 

The on-board component of the AI platform provides the completely auton-
omous functioning of its agents. It implements the capability for independent nav-
igation without the GPS (Global Positioning System) satellite signals, making 
decisions in real time, decentralized swarm coordination, and adaptation in case 
of losing individual agents, or changes in the environment. Its functioning is 
based on the on-board AI modules, sensor systems, stygmergy algorithms, decen-
tralized planning, reinforcement learning methods, self-learning and self-
organization, SLAM (Simultaneous Localization and Mapping) methods, and 
other modern approaches [11–13]. This component in particular implements the 
cognitive behavior during missions: each drone is able to orient itself, perform the 
assigned tasks, and interact with other swarm agents without centralized control. 

The ground control center performs the role of the strategic brain center of 
the system. It provides both primary, and cyclical training of the neural networks, 
modeling mission scenarios in the simulation environment using digital twins 
[14–17], testing and validation of the models, as well as the generation of the be-
havioral politics for on-board implementation. The ground center aggregates in-
formation from OSINT/ESINT sources, adapts the models to the operational con-
text using analytics, supports visualization, monitoring and strategic correction. 
Through secure human-machine interface the operator obtains access to pa-
rametrization of missions, system state management, and updates to the AI mod-
ules software. 

The interaction between the on-board and ground systems is organized as a 
closed cognitive loop. In the pre-missionary phase, the ground control center im-
plements the training of models, mission modeling; creates the digital twins for 
drones, and uploads the updated algorithms to the on-board systems. This process 
involves analytical modules that aggregate OSINT (Open-Source Intelligence) for 
adaptation to the current context. During missions, the drones operate autono-
mously, performing swarm coordination, and in case the secure connection is 
available, transmit telemetry to the center which conducts monitoring and pro-
vides corrections if necessary. After the mission, the collected data is analyzed, 
log files are checked for anomalies, the models are tweaked, and the new cycle of 
training is started. Thus, the system is capable of continuous cognitive evolution – 
it learns on its own experience, gradually increasing the efficiency and resilience 
to new challenges of modern combat environment. 

The cognitive AI platform is the only intellectual architecture system that in-
cludes ground and on-board components that jointly form the adaptive and viable 
complex for coordinated autonomous navigation of a UAV swarm. This complex 
functions within a continuous loop of adaptation and improvement, encompassing 
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pre-mission preparation, autonomous task completion, post-mission analysis, and 
further additional training. This loop implements the concept of a cognitive core 
as a system capable of forming, updating and generalizing knowledge based on its 
own experience, react to the variable conditions, support collective behavior of 
agents, and retain efficiency in a complex, dynamic, and hostile environment. 

The purpose of this research is to create architecture and principles of the 
system operation where each UAV behaves as an autonomous cognitive agent, 
capable of navigating without GPS, make decisions based on the local informa-
tion, exchange signals with its neighbors using stygmergy or a mesh network, 
while acting within a single coordinated environment (the swarm). The construc-
tion of a new generation cognitive AI platform that combines adaptivity, resil-
ience and scalability, is envisioned, enabling the UAV swarm to operate inde-
pendently of external control, and efficiently complete the assigned tasks 
(missions) even under critical circumstances. This research is aimed at imple-
menting the swarm intelligence in defense and rescue technologies, and forms the 
theoretical and engineering base for the next generation of double purpose 
autonomous systems. 

THE GROUND CONTROL CENTER FOR THE AI PLATFORM WITH 

COGNITIVE SERVICES 

The ground control center for neural network training is a critical architecture el-
ement of the general AI platform for cognitive control of the autonomous drone 
swarm. It performs the functions of development, testing, adaptation, security 
check, and preparation of the behavior strategies and cognitive models that will be 
uploaded to each of the drones before the actual mission assignment. The struc-
ture of this center is modular, logically decentralized, but centralized by computa-
tional power. It includes the following main functional blocks (Fig. 1): 

Model training module. This block is responsible for the primary and recur-
rent training of the neural networks that will be applied in drone systems. The 
technologies involved include Reinforcement Learning models, self-learning 
models, perception models for detection and tracking of objects, as well as graph 

GROUND CONTROL CENTER 
OF THE AI PLATFORM 

MODEL TRAINING 
MODULE 

SIMULATION  
LAB WITH  

DIGITAL TWIN 

SWARM 
CONTROL AND 

MISSION 
PREPARATION 

MODULE 

SECURITY AND 
VALIDATION 

MODULE 

ANALYTICAL 
BLOCK 
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Fig. 1. The architecture of the ground center of the AI platform 



M.Z. Zgurovsky, P.O. Kasyanov, N.D. Pankratova, Yu.P. Zaychenko … 

ISSN 1681–6048 System Research & Information Technologies, 2025, № 3 
 

10

neural networks (GNN) for optimization of behavior in swarm configurations. 
The training is performed both on the historical data, and the data obtained during 
previous missions. 

Simulation lab with digital twin. The digital twin of the ground center is a 
critical element of the general AI platform architecture that allows to test the neu-
ral network behavior in complex and variable scenarios. Here both the standard 
situations are simulated, and the stress scenarios, including the loss of the swarm 
elements, navigation under interference, electronic warfare conditions. This stage 
provides adaptivity and resilience of the trained behavior even before the real op-
eration. 

Analytical block. This module conducts the analysis of open-source data 
(OSINT). Analytical insight regarding the potential risks, typical tactics of the 
enemy, or features of the mission territory can be promptly integrated in the proc-
ess of preparation for the real mission, increasing the relevance of the drone be-
havior. This may include, in particular, the location of the notable objects, rele-
vant mission details, maps etc. 

Security and validation module. Following the primary training, all models 
are tested to ensure they meet resilience, security, and durability requirements. In 
particular, this check includes a model’s capability of detecting anomalies, resto-
ration after errors, resilience to attacks at the data level, connection channels, and 
model integrity. Validation is the obligatory stage before the mission implementation. 

Swarm control and mission preparation module. This block represents the 
control interface that aggregates the results from all other blocks and prepares the 
behavior model for uploading to the drones; forms the detailed missions; distrib-
utes the tasks among agents; plans the route networks; defines the zonal priorities. 
This module is used to upload the prepared cognitive software to the drones be-
fore their assignment to the real or test mission. The center also performs the 
functions of the swarm state monitoring, interactive control, and strategy adapta-
tion in real time. 

As the Fig. 1 shows, the interaction between the sub-systems of the ground 
control center is organized as a closed cognitive loop that guarantees the whole-
some functioning of the drone swarm control system. In this loop the models 
formed in the training module are automatically transferred to the simulation lab, 
where they are subject to testing under the circumstances as close as possible to 
the real environment. The simulation results are analyzed by the validation mod-
ule that makes the decision regarding the fitness of the models for combat use. 
The OSINT module works in parallel, generating the contextual scenarios using 
open-source intelligence data; these scenarios are integrated into the training pro-
cesses, increasing adaptivity and relevance of the trained models. 

When the neural networks complete all verification stages, the swarm con-
trol center uploads them on-board of the drones, initiating missions, and perform-
ing their accompaniment, monitoring and correction in real time. Thus, the 
ground center acts as a “cognitive foundry” of the system – the environment 
where the artificial intelligence is not only created but also evolves under the in-
fluence of the new data, combat experience, and strategical analysis. Here the in-
tellectual potential of the swarm is formed, allowing the drones to act as intelli-
gent autonomous agents with high adaptation abilities, mutual understanding, and 
collective behavior in the complex and hostile environment. 
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BASIC SCENARIOS (MISSIONS) FOR THE AUTONOMOUS NAVIGATION OF 

THE DISTRIBUTED MULTI-AGENT SYSTEMS  

In modern combat and rescue conditions the scenarios for the drone swarm con-
stitute the basis for the cognitive behavior of the autonomous agents that function 
within the integral AI platform. These scenarios are not just simple instructions – 
they represent the structured, multi-component algorithmic descriptions, prelimi-
narily modeled in the ground control center. Due to the involvement of digital 
simulation environments (such as Gazebo or AirSim), analytical modeling, mis-
sion planning tools (such as QGroundControl), and machine learning methods, 
the scenarios achieve high adaptivity to the complex and dynamic environment. 
After modeling they are saved in JSON, XML, TensorRT, ONNX [18] etc. for-
mats, and are uploaded to the computational blocks of each drone through a se-
cure channel before the mission starts. 

The content of these scenarios includes several critically important func-
tional blocks: mission planning, autonomous navigation, recognition, decision 
making, and swarm coordination. The planner contains the vectorized task de-
scription, temporal parameters, action sequences, and defined objectives. The 
autonomous navigation modules provide route planning in real time using SLAM, 
localization and obstacle avoidance algorithms. The recognition components are 
responsible for the processing of sensor data from cameras, thermal imagers and 
radars, allowing them to detect objectives, obstacles and threats. The decision 
making is implemented through cognitive models capable of situational analysis, 
and producing reactions based on environment assessment. Finally, the swarm 
coordination provides the dynamic distribution of roles between agents, syncing 
of the trajectories, and coordinated behavior within the swarm [19]. 

The unique nature of these scenarios lies in their ability to activate the on-
board drone cognitive modules that provide adaptive behavior even in case of the 
absent connection to the control center, external interference, or the shifting envi-
ronment. In other words, the drones not only implement the previously assigned 
actions, but also learn from the current situation, predict risks, and react collec-
tively. This is made possible by the integration of reinforcement learning meth-
ods, graph neural networks, and large language models that enable flexible, situ-
ational cognition at the swarm level [20]. 

Let us provide a list of basic scenarios: 
Scenario 1: Enemy territory reconnaissance. The drone swarm distributes 

the reconnaissance area (e.g., 10×10 km), with each sub-area assigned to an indi-
vidual drone. The results are obtained as a shared locality map. The scenario is 
performed by 6–12 drones that cover up to 100 km2 in 15–40 minutes. 

Scenario 2: Targeted strike with autonomous guidance. Several drones at-
tack the target from different directions, overcoming air defenses by dispersed 
planning. Up to 7 drones attack the target’s coordinates in 3–10 minutes after its 
detection. 

Scenario 3: Communication relay. The drone swarm creates a temporary 
mesh network, providing connection under electronic warfare. For example, 5–15 
drones create a 5–10 km long linear network, providing communication for 20–60 
minutes. 
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Scenario 4: Search and rescue. The swarm autonomously scouts the de-
struction zone, detecting people and animals by performing scanning with distri-
bution of routes. Up to 20 drones are used, with coverage area 10–40 km2 for one 
hour. 

Scenario 5: “Death ring” swarm attack. The drones fly round the target 
from all directions, forming a ring, and strike it simultaneously. In this scenario 
5–10 drones are used, with 100–500 m attack radius during 5–15 minutes. 

Scenario 6: Scattering false targets/misinformation. The swarm scatters imi-
tation objects to mislead the enemy or mask the actual swarm’s goals, by per-
forming a coordinated placement of false targets (vehicle imitations), or modeling 
the behavior of a real vehicle column. During 10–30 minutes 5–10 drones place 
signal imitators along the 20 km route, using GPS and waypoint navigation (a 
drone moves from one waypoint to another in a predetermined sequence). 

The compiled scenario (mission) parameters are given in Table 1. 

T a b l e  1 .  The compiled scenario (mission) parameters for UAV swarms 

Scenario Drone  
quantity 

Surface/length 
of coverage Duration Communication/ 

protocol 
Scenario 1. 

Enemy territory re-
connaissance 

6–12 Up to 100 km² 15–40 minutes
DDS or ROS  

topics + sensors  
(LIDAR/camera) 

Scenario 2. 
Targeted strike with 
autonomous guidance 

Up to 7 
Depends  
on target  

(up to 10 km) 
3–10 minutes MAVLink/mesh  

connection 

Scenario 3. 
Communication relay 5–15 5–10 km 20–60 minutes DDS+RTPS with  

real-time QoS profile 
Scenario 4. 

Search and rescue Up to 20 10–40 km² Up to 1 hour ROS topics +  
thermal imager 

Scenario 5. 
Death ring 5–10 Attack radius up 

to 500 m 5–15 minutes ROS2 + DDS 

Scenario 6. 
Scattering  

false targets 

5–10  
depending 

on the route

Up to 20 km 
route 10–30 minutes MAVLink with  

waypoint navigation 

 

So, the scenarios for the drone swarm become the key element for the cogni-
tive AI platform, combining high precision planning, realistic simulation, analyti-
cal adaptation, and self-learning. Their exploitation not only increases mission 
efficiency, but also provides resilience to the uncertainty factors, which is critical 
in the environment where each second and each decision is significant. 

ON-BOARD COMPONENT OF THE AI PLATFORM WITH COGNITIVE 

SERVICES 

The on-board component is a key functional environment where the autonomous 
intelligence of each drone in the swarm is implemented. This is the place where 
the integration of cognitive models, sensory perception, swarm interaction, flight 
control, and adaptive decision making in real time is performed. The architecture 
of this component (Fig. 2) is multi-layered and includes a number of modules that 
jointly ensure the independence of the drone from external control, its self-
learning capacity, and flexible reaction to a dynamic environment. 
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Let us consider each module of the architecture presented in Fig. 2, review-
ing its functions, and their mutual interaction. 

The center of the architecture is comprised of the cognitive core that acts as 
a drone’s “brain”, and is responsible for situational analysis, adaptation and deci-
sion making. Its fundament is the Swarm coordination module, implemented us-
ing the hybrid approach where the swarm AI methods are applied using a hybrid 
scheme: the Behavioral trees (BTs), and Global swarm optimization (Global Best 
PSO) that can reconfigure in real time depending on the changes in the environ-
ment [21–22]. This allows each agent to form the sequence of actions, independ-
ently react to the loss of communication, emergence of new threats, or changes in 
objectives. 

Combined with the Adaptive behavior planning module that analyzes risks, 
priorities and current context, the system acquires the ability for conscious deci-
sion making even having incomplete information. It performs the incremental on-
board learning (given the appropriate resources), bufferization of the field data, 
and the backhaul retraining loop implementation – the transmission of the col-
lected data to the ground control center, with the subsequent updates in the mod-
els. This mechanism forms the basis of the system evolution, as it allows to take 
previous experience into account in the future missions. This approach allows to 
coordinate local trajectories, synchronize agent sub-groups, and sustain the over-
all mission goals at the lower autonomy level. 

To enable these cognitive processes, the drone requires a constant flow of in-
formation about the environment. This task is achieved by the Machine vision and 
data processing module that aggregates the data from cameras, ultra-sonic sensors 
etc., forming the local space maps using SLAM algorithms [23–24]. An important 
feature of this layer is its capability for semantic classification of the objects (e.g., 
enemy units, civilians, allied units), and detection of the situational patterns that 
allow to construct not only a spatial, but also a behavioral model of the environ-
ment. 

For coordinated interaction among the swarm elements, the platform con-
tains the communication module, based on low latency DDS/RTPS protocols. It 
provides the interchange of statuses between agents by behavioral subtree broad-
cast, and allows to maintain the swarm coordination without the centralized con-
trol [25–27]. Even in case of losses or disruption in network channels the module 

Cognitive core 

Swarm  
optimization 

Adaptive  
behavior  
planning 

Machine vision 
and data proc-
essing module 

Security, threat  
and anomaly  

detection  
module 

DDS/RTPS  
communication 
module, swarm 

exchange 

Navigation  
and flight  
module 

Digital twin  
(modeling,  
simulation) 

Energy 
management 
and hardware 

security module

Fig. 2. The structural scheme of the on-board component of the AI platform 
with cognitive services 
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remains operational due to the QoS control network that allows to duplicate criti-
cal data, and adapt priorities. 

The physical implementation of the cognitive core is done by the Navigation 
and flight module that is the interface to the autopilots like PX4 or ArduPilot. It 
performs maneuvers, passing route points and avoiding obstacles, while relying 
on the visual odometry and SLAM data to ensure collision safety. 

At the same time, the Security, threat and anomaly detection module is re-
sponsible for self-observation: temperature monitoring, CPU/GPU load, system 
degradation detection, and activates fail-safe scenarios, or dynamically resched-
ules the swarm tasks in case of losses of individual agents. Detecting anomalies in 
time series of sensory indicators allows the system to automatically react to po-
tential threats, detect compromised swarm participants, analyzing the irregular 
patterns in input data. This approach is more flexible than the traditional heuristic 
rules in robotized systems [4]. 

A strategically important link is the Digital twin module – a limited repre-
sentation of a fully functional digital twin deployed in the ground control center. 
On-board this module is responsible for maintaining the relevant strategies, simu-
lation of the partial actions, and asynchronous renewal of the behavioral models 
[14–17]. It guarantees the autonomous behavior even in case of a complete con-
nection loss, synchronizing data later. 

Finally, the stability and security of the system is sustained by the Energy 
management and hardware security module that includes communication encryp-
tion, agent authentication, multi-layered service backup, and power management. 
This module allows the system to adapt to power supply limitations, lowering the 
sensor operation intensity, or switching to the energy-saving mode in critical 
moments. The whole multi-layered system provides the autonomous, adaptive and 
resilient UAV swarm operation even in hostile or unpredictable environment, im-
plementing the modern approaches to the on-board cognitive management. 

SCENARIO 4 (SEARCH AND RESCUE) IMPLEMENTATION PLAN EXAMPLE  

The operational situation: after a large-scale earthquake in some region several 
settlements were ruined. There is a risk of further collapses, and the access for the 
ground rescue groups is limited. An autonomous scanning of territory with a total 
area of nearly 30 km2 is required to find the victims, designate safe evacuation 
zones, and transmit the coordinates to the ground forces. 

The employment of the AI platform. To implement the scenario, a swarm sys-
tem of 16 autonomous quadcopters will be deployed. The drones will be equipped 
with thermal imagers, RGB cameras, and laser rangefinders (LiDARs). The com-
putational platform of each drone allows local image processing, map charting, 
and decision making. SLAM navigation, along with visual odometry and obstacle 
avoidance module, will be used to form local maps, and dynamically plan routes 
in real time. The behavioral coordination in the swarm will be implemented on 
the base of combined Behavior Trees and Graph Neural Networks that will allow 
adaptively distribute the tasks between agents, avoid duplication of the search 
zones, and optimize the area coverage. 

The platform will ensure: 
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 distribution of the swarm into sub-groups of 4 drones with partial (~10%) 
overlap of the areas for increased probability of object detection; 

 detection of heat anomalies using a pre-trained neural network; 
 suppressing background noise (e.g., heat from transport or infrastructure); 
 exchanging scanned area tags, and analysis results between participants. 
For synchronization of the swarm behavior the implementation of the sub-

tree broadcast protocol is planned that will transmit the minimal context every 
few seconds. Communication between agents is planned to be achieved through 
the ROS Topics + DDS with QoS parameters stack, providing reliable data ex-
change. 

The expected data to be utilized includes: 
 previous mission simulation models, formed on the base of satellite image 

data, topographical data and OSINT; 
 fallback behavior scenarios for cases of connection loss or situation change. 
The transmission to the ground center is conducted through relay drones that 

hover at up to 120 m height and form the mesh network. They transmit: 
 local maps; 
 visual confirmations; 
 coordinates of detected objects and safe areas; 
 GPS/SLAM log files. 
The expected results include: 
 detection of the potentially alive targets using thermal signatures; 
 coverage map charting, and marking the risk areas; 
 designation of safe routes for evacuation; 
 transmission of the structured coordinates and statuses to the operational 

headquarters. 

CONCLUSIONS 

1. The developed AI platform for the autonomous navigation of UAV 
swarms presents a fundamentally new approach to handling the distributed multi-
agent systems under conditions of a complex, dynamic, and hostile environment. 
Its architecture combines the ground control center, and the autonomous on-board 
subsystem, providing a continuous loop of adaptation, learning and evolution for 
artificial intelligence during each of the mission stages, from pre-mission model-
ing, to post-mission analysis. The ground control center performs the functions of 
simulation, training, validation and strategic coordination, while each drone, due 
to its cognitive core, sensory stack and communication modules, implements au-
tonomous navigation, recognition, and decision making without centralized control.  

2. A number of basic scenarios (missions) is formed that cover a broad spec-
trum of combat and humanitarian tasks. These scenarios include both classic ob-
jectives (reconnaissance, targeted strikes, communication relay), and specialized 
missions (search and rescue, misinformation, “death ring” strike), proving the 
platform’s scalable and universal nature in dynamic environments. Formalization 
and typification of such scenarios allow to not just quickly adapt the swarm to 
new conditions but also form a repository for behavioral patterns that will be im-
proved using the principles of cognitive learning over time. 
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3. An on-board component of the AI platform with cognitive services was 
developed by combining a cognitive core, a sensor and analytical layer, naviga-
tion, communication, and security modules. Each drone in the system can act in-
dependently, adapt to the changes in environment, make critical decisions in real 
time, and interact with other agents without centralized control. The hybrid appli-
cation of the AI swarm intelligence methods “Behavior Trees” and “Global 
swarm optimization”, and SLAM methods provides situational prediction and 
flexible reaction. The availability of power management, self-observation, and 
local knowledge updates additionally fortifies the system’s survivability, and the 
digital twin module provides the asynchronous swarm evolution even after con-
nection loss. All these functional capabilities prove that the on-board component 
is not just a computational node, but an accomplished cognitive agent, able to 
conduct missions within the decentralized new generation architecture. 

4. A model search and rescue scenario of people after a catastrophe is pro-
posed, where a drone swarm autonomously scans the investigated area, detects 
heat anomalies, identifies casualties, and transmits the coordinates for evacuation. 

In preparing this manuscript, we used ChatGPT 4.0 to improve the style. 
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КОГНІТИВНА AI-ПЛАТФОРМА ДЛЯ АВТОНОМНОЇ НАВІГАЦІЇ 
РОЗПОДІЛЕНИХ БАГАТОАГЕНТНИХ СИСТЕМ / М.З. Згуровський, 
П.О. Касьянов, Н.Д. Панкратова, Ю.П. Зайченко, І.О. Савченко, Т.В. Шовкопляс, 
Л.С. Палійчук, А.М. Титаренко 

Анотація. Подано концепцію когнітивної AI-платформи для автономної наві-
гації розподілених багатоагентних систем на прикладі рою безпілотних літа-
льних апаратів. Запропоновано архітектуру, яка поєднує наземний центр із ко-
гнітивними сервісами та багаторівневу бортову підсистему, що забезпечують 
безперервний цикл навчання, адаптації, виконання та оновлення поведінкових 
моделей. Сформульовано базові сценарії місій, зокрема розвідка, пошук і ря-
тування, ураження цілей, дезінформація, які демонструють можливості рою до 
автономної, децентралізованої взаємодії навіть у ворожому середовищі. Пред-
ставлено приклад плану реалізації місії пошуку і рятування із використанням 
когнітивної платформи, що включає адаптивне планування, SLAM-навігацію, 
ройову координацію та глибоке розпізнавання об’єктів. Результати частково 
підтримано Національним фондом досліджень України, грант № 2025.06/0022 
«AI-платформа з когнітивними сервісами для координованої автономної наві-
гації розподілених систем, що складаються з великої кількості об’єктів». 

Ключові слова: штучний інтелект, рій дронів, автономна навігація, когнітив-
на платформа, мультиагентні системи, поведінкові дерева, цифровий двійник, 
SLAM. 


