

 V.V. Yurchenko, A.O. Litovchenko, 2014

Системні дослідження та інформаційні технології, 2014, № 4 69

УДК 004.75, 004.42

EMI EXECUTION SERVICE — THE KEY TO PROVIDE

INTEROPERABILITY OF GRID INFRASTRUCTURES

V.V. YURCHENKO, A.O. LITOVCHENKO

Implementation of the EMI Execution Service (ES) specification will ensure inter-
operability in Grid infrastructures, including the NGI-UA, since a single set of speci-
fications and a common job management interface will be used. This paper presents
the results of the study of applying of the EMI-ES specification to provide interop-
erability in the Ukrainian national grid. During the research next features were stud-
ied: the structure of the EMI-ES specification, developed on the basis of the analysis
of computing services in industrial environments by Working Group OGF Produc-
tion Grid Infrastructure (PGI), functionality in data staging, presented by elements
of stage-in (file download), and stage-out (extraction of results). The modular struc-
ture of the EMI-ES, which allows launching cross submissions between different
middleware and computing elements, is represented. The execution order of the ES
submission command is reviewed and shown schematically. The implementation of
the EMI-ES service in middleware ARC is described. Next steps in development of
the EMI Execution Service (ES) are also described.

INTRODUCTION

In 2010 in order to develop and standardize middleware software four major mid-
dleware providers: gLite, ARC, UNICORE and dCache have joined efforts in
a joint project. This project was named EMI (European Middleware Initiative).
EMI supports broad scientific experiments and initiatives, such as the Worldwide
LHC Computing Grid (for the Large Hadron Collider).

One of the main objectives of EMI is to create common approaches and im-
plement developed standards to provide a unified approach to the implementation
of compute, information and other services for various middleware. The term
Unified Middleware Distribution (UMD) was introduced to denote an integrated
distribution of gLite, UNICORE and ARC, dCache.

The specification of the EMI (ES) was developed by Working Group OGF
Production Grid Infrastructure (PGI) according to results of the analysis of com-
puting services in the industrial grid infrastructures. Results of research of the ES
are presented in this article [1].

There are eleven major grid sites in Ukraine, five of which are under the
management of gLite middleware, and others use ARC middleware. The problem
of their interaction occurs even within a single infrastructure.

Implementation of the EMI-ES specification will provide interoperability in
grid infrastructures, including Ukrainian national grid, as a single set of specifica-
tions and a common job management interface will be used. The ES was pre-
sented for the first time in EMI 2 in May 2012. New version was released in
EMI 3 (28 February 2013) [1].

The subject of this article is to study the implementation of the EMI-ES
specification for gLite, ARC. Main directions of research are to examine new

V.V. Yurchenko, A.O. Litovchenko

ISSN 1681–6048 System Research & Information Technologies, 2014, № 4 70

modules and the principles of their interaction and to identify key functional solu-
tions for implementation of the ES service.

THE STRUCTURE OF THE SPECIFICATION

It is stated, that the EMI-ES is a web service and has WSDL description. The ES
acts as an interface to create and manage tasks (activities). Description of the
tasks should be performed in the ADL (Activity Description Language) format,
dialect of XML. It allows determining a necessary application, a type of the re-
quested resource, transferring parameters of the job, identifying input and output
files, settings, data staging (the control of the data placement) and other attributes
of the QoS (Quality of Service).

The extraction of information about resources and tasks is performed by the
ES command line interface or using XPATH, XQUERY, SQL query languages.
Information about the resources and tasks is provided according to the GLUE2
specification.

The transfer of delegations token is provided by the mechanisms of GSI —
X.509 proxy and SAML (Security Assertion Markup Language) (as a part of the
exchange of SOAP messages) [2].

Powerful functionality in data management is represented by the following
elements:

 downloading files (stage-in) with the support of the mechanisms of server
data pull and client data push;

 retrieving results (stage-out) using server data push, client data pull or ac-
cess to a session directory during execution phase via GridFTP or other data
transfer tools.

For what concerns stage-in, that is the staging of input data to the execution
service done before job execution, there are two possible scenarios:

 Server data pull: the ES pulls the needed data from the specified (in the
activity description document) sources and makes them available later in the ses-
sion directory. These data may be first uploaded into the stage-in directory. This
«server data pull» scenario requires delegation support, since the server has to act
on behalf of the activity owner. Server data pull takes place in the preprocessing
or processing-running state. The server-stagein attribute is used to report about
this server-initiated data transfer.

 Client data push: the client uploads the data into the stage-in directory.
The activity description must contain a flag informing the server that the client
wishes to push data (attribute ClientDataPush of the DataStaging element). When
done with data push, the client explicitly tells the server to continue processing
the activity via the NotifyService operation.

The data to be pushed may be declared in the activity description. In this
case, client implementations must stage-in all the declared files. Data can be
pushed when the stage-in directory has been created, and the activity is in a state
with the client-stagein-possible attribute set.

For what concerns stage-out, that is the staging of output data from the exe-
cution service done after job execution, there are two possible scenarios [3]:

Emi execution service – the key to provide interoperability of grid infrastructures

Системні дослідження та інформаційні технології, 2014, № 4 71

 Server data push: the ES pushes the relevant data to the specified (in the
activity description document) targets. The «server data push» scenario requires
delegation support, since the server has to act on behalf of the activity owner.
Takes place when the server-stageout state attribute is set.

 Client data pull: the client pulls the data from the stage-out directory of
the ES. The downloading must take place in states with the client-stageout-
possible state attribute set. The data to be pulled must be declared in the activity
description.

FUNTIONAL DESCRIPTION

Due to a modular structure, the EMI-ES allows launching cross submissions
between different middleware and computing elements (Fig. 1).

EMI-ES consists of five main modules (Fig. 2). These modules offer differ-
ent functionalities embodied as independent port-types, and can be grouped and
offered via independent services, usually on the same machine, eventually
running separately on different machines.

Each of them implements a set of operations. The following describes each
module’s purpose and operations corresponding to each port-type:

Fig. 1. Functional schema of EMI-ES

Fig. 2. The relationships between main ES modules

V.V. Yurchenko, A.O. Litovchenko

ISSN 1681–6048 System Research & Information Technologies, 2014, № 4 72

 ActivityCreation port-type: CreateActivity.
 ResourceInfo port-type: GetResourceInfo, QueryResourceInfo.
 ActivityManagement port-type: GetActivityStatus, GetActivityInfo, Noti-

fyService, PauseActivity, ResumeActivity, CancelActivity, WipeActivity, Re-
startActivity.

 ActivityInfo port-type: ListActivities, GetActivityStatus, GetActivityInfo.
 Delegation port-type: InitDelegation, PutDelegation, GetDelegationInfo.
For convenience, some (GetActivityStatus and GetActivityInfo) operations

can be accessed via both ActivityManagement and ActivityInfo port-types.
It must be stressed that ResourceInfo port-type refers only to information re-

lated to the Computing Element and it does not contain information about activi-
ties. Activities information can be retrieved using ActivityInfo port-type [3].

The execution order of ES submission command consists of next steps (Fig. 3):
1. Checking proxy by X509 mechanisms, VOMS.
2. Loading parser and analysis of the job description, which set in a common

ADL format.
3. Getting information about the ES service of computing element via SOAP

messages based on the GLUE2 specification.
4. Performing CreateActivity action on the computing element.
5. Sending a job description file and input files (Stage-In) to the computing

element by using gridftp utilities.

EMI-ES IN ARC

EMI-ES interface is implemented as a part of A-REX production service.
Service is split into modules by functionality (Fig. 4):
 interface;
 job management;

Fig. 3. The execution order of ES submission command

Emi execution service – the key to provide interoperability of grid infrastructures

Системні дослідження та інформаційні технології, 2014, № 4 73

 data staging;
 credentials delegation.
 batch system communication.

Modular design allows having multiple interfaces simultaneously.
Result of implementation on the client side — C++ library with a set of dy-

namically loadable plugins:
 for indexing services;
 for computing services’ information (based on GLUE2 model);
 for job control;
 for job description languages (based on EMI ADL) [3].

FUTURE DESIGNS

A further step in the development of ES service is to provide a common EMI cli-
ent to replace three basic middleware. This client will use a single job description
language and a common interface for job management, and will enable users to
access various services management tasks with a single mechanism [1].

Despite the fact, that work on the implementation of the ES Specification in
gLite client of EMI 3 was suspended, we have a good reason to believe, that the
common client will be based on existing results.

Efforts are also focused on standardization of queries, reports, and schemas
of the interaction of computing elements, which is a basis for the implementation
of solutions offered by the EMI-ES.

OBTAINED RESULTS AND CONCLUSION

During the research we explored principles of construction and operation of the
EMI-ES service and discovered opportunities for interoperability of Grid re-
sources with different software architecture.

Fig. 4. Implementation of EMI-ES in ARC

V.V. Yurchenko, A.O. Litovchenko

ISSN 1681–6048 System Research & Information Technologies, 2014, № 4 74

Current versions of software that supports the ES specification were in-
stalled, including a client and server-side distributions of ARC and gLite middle-
ware.

Several changes in the client side of ARC were made. Standard ADL and
JDL parsers are not able to process description files right, so ARC broker can’t
perform successful matchmaking against CREAM-CE target. Some attributes
(QueueName, BatchSystem and InputSandbox) were hardcoded in order to make
a job description compatible with CREAM. This allowed making a successful
submit to CE with the CREAM interface.

Since these attributes are unique to each grid site, this solution is ad-hoc. In
order to implement obtained results, ARC client should be recompiled according
to the known instructions.

Our solution can already be implemented in ARC middleware, and since the
ES specification is no longer amended, it allows us to hope that our results will be
demanded in further development of EMI ES.

REFERENCES

1. EMI-Compute. — http://www.eu-emi.eu/compute.
2. EMI Execution Service Factsheet. — http://www.eu-emi.eu/documents/10147/

31168/EMI-ES.pdf.
3. EMI Execution Service Specification. — https://twiki.cern.ch/twiki/pub/EMI/

EmiExecutionService/ EMI-ES-Speci_cation v1.16.odt.

Received 08.07.2013

From the Editorial Board: the article corresponds completely to submitted manu-

script.

