МУЛЬТИФРАКТАЛЬНЫЙ ФЛУКТУАЦИОННЫЙ АНАЛИЗ СТЕГАНОГРАММ

Д.А. ПРОГОНОВ, С.Н. КУЩ

Рассмотрено использование мультифрактального флуктуационного анализа для определения типов преобразований, использованных при встраивании стегоданных в цифровые изображения. Показано, что применение как стандартных (дискретное вейвлет преобразование), так и специальных (сингулярное разложение) преобразований цифровых изображений при скрытии сообщений приводит к существенным изменениям фрактальных параметров флуктуаций яркости пикселей (ширины мультифрактального спектра). Характерные изменения результатов мультифрактального флуктуационного анализа стеганограмм по сравнению с незаполненным контейнером дают возможность определять тип преобразований, использованных при встраивании стегоданных в области преобразования контейнера. Установлено, что в случае использования стандартных преобразований, применение мультифрактального флуктуационного анализа позволяет дополнительно оценить степень детализации встроенных стегоданных. Полученные результаты могут быть использованны для повышения эффективности современных методов активного стегоанализа изображений.

введение

Модернизация классических методов цифровой стеганографии, а также разработка новых методов, основанных на использовании различных преобразований, как контейнеров, так и стегоданных при формировании стеганограмм, существенно усложняют проведение активного стегоанализа (АС). Определение типа преобразований, использованных для встраивания стегоданных в контейнер — цифровое изображение (ЦИ) — позволит выбрать оптимальный метод АС, обеспечивающий максимальную деструкцию стегоданных при минимальных искажениях контейнера.

Цель работы — определение типа преобразований, использованных для встраивания стегоданных в области преобразования контейнера, методом мультифрактального флуктуационного анализа.

ВСТРАИВАНИЕ СТЕГОДАННЫХ В ЦИФРОВЫЕ ИЗОБРАЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ РАЗЛИЧНЫХ ТИПОВ ПРЕОБРАЗОВАНИЙ

Преимуществом скрытия сообщений в области преобразования контейнера (ОПК), по сравнению с классическими методами встраивания стегоданных в пространственной области ЦИ (LSB-методами) [1–3], является их более высокая устойчивость при проведении как пассивного, так активного стегоанализа [4].

Известные методы скрытия сообщений в ОПК можно разделить на две группы [5, 6]. К первой группе относятся стеганограммы, сформированные

с использованием стандартных, например, двумерного дискретного вейвлет-преобразования (ДДВП) ЦИ, а ко второй — специальных преобразований, например, сингулярного разложения (СР) ЦИ. Преимуществом использования стандартных преобразований является высокая робастность получаемых стеганограмм к существующим методам АС изображений, а применение специальных преобразований позволяет снизить эффективность известных методов пассивного стегоанализа ЦИ.

В работе рассмотрены одноэтапные методы скрытия данных в ОПК с использованием как стандартных (метод Дея), так и специальных (метод Агарваля) типов преобразований ЦИ. Исследование проводилось на тестовом пакете из 100 полноцветных ЦИ с разрешением UHD-4K (3820×2180 пикселей). В качестве стегоданных были использованы три полноцветные изображения с различной степенью детализации: портрет (565×850 пикселей), чертеж (567×463 пикселей) и карта (800×800 пикселей). Степень заполнения контейнера стегоданными варьировалась от 5% до 25% с шагом 5% и от 25% до 95% с шагом 10%.

Встраивание стегоданных в области преобразования ЦИ с использованием ДДВП проводилось по методу Дея [5]. Прямое и обратное ДДВП для отдельных каналов цвета изображений рассчитывались согласно [7]. В качестве базисных функций преобразования были выбраны вейвлет Хаара и соответствующая ему скейлинг-функция.

Согласно методу Дея, ДДВП применялось к каждому каналу цвета изображения-контейнера и стегоданных, после чего производилось суммирование полученных коэффициентов разложения. Для вариации степени «вклада» скрываемых сообщений был использован масштабирующий множитель β на который умножались коэффициенты ДДВП стегоданных [5]. Значения весового коэффициента β варьировались в диапазоне от $\beta_{\min} = 0.02$ до $\beta_{\max} = 0.08$ с шагом $\Delta_{\beta} = 0.02$, где β_{\min} соответствует появлению значительных искажений при экстракции стегоданных, а β_{\max} — возникновению видимых искажений стеганограммы.

Скрытие данных в ЦИ с использованием сингулярного разложения (СР) ЦИ, рассмотрено на примере метода Агарваля [6]. Сингулярное разложение отдельного канала цвета ЦИ I(x, y) проводилось согласно выражению [8]:

$$B = \sum_{i=1}^{d} \sqrt{\lambda_i} \cdot U_i V_i^T, \tag{1}$$

где $\sqrt{\lambda_i}$ — сингулярные числа (СЧ) I(x, y); U_i, V_i — соответственно, левый и правый сингулярные вектора (СВ) выбранного канала цвета ЦИ.

Особенностью использования СР при встраивании стегоданных в ЦИ является независимость результатов разложения (сингулярных чисел) от вида аффинных преобразований стеганограмм (сдвига, вращения, масштабирования) [8].

Преимуществом метода Агарваля, по сравнению с другими методами, является возможность распределенной передачи СЧ и СВ, полученных согласно (1), с использованием нескольких контейнеров (мультиагентная модель). Как и для метода Дея, вариация степени искажения ЦИ при встраивании стегоданных обеспечивалась применением весового параметра β .

КОРРЕЛЯЦИОННЫЕ И ФРАКТАЛЬНЫЕ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ

Существующие методы пассивного стегоанализа основаны на оценке степени отличия анализируемого изображения относительно известной модели чистого контейнера [2, 3]. В этом случае широко используются статистический анализ ЦИ и специальные методы, применяемые для исследования тонкой структуры изображения, в частности флуктуаций яркости пикселей.

Одним из современных видов анализа шумовых компонент дискретных сигналов является мультифрактальный флуктуационный анализ (МФФА). Он является развитием классического флуктуационного анализа (КФА) и позволяет исследовать как корреляционные, так и фрактальные характеристики флуктуаций значений яркости пикселей исследуемого сигнала [9]. Схема алгоритма МФФА ЦИ представлена на рис. 1.

Рис. 1. Схема алгоритма мультифрактального флуктуационного анализа цифровых изображений

При проведении исследований, исходное изображение I(x, y) размером $M \times N$ (пикселей) обрабатывалось построчно с шагом выборки Δ_d .

Системні дослідження та інформаційні технології, 2015, № 4

На первом этапе обработки ЦИ, в блоке одномерного МФФА производился расчет вектора кумулятивных сумм (рис. 1) исследуемой строки изображения [9]:

$$C(i) = \sum_{k=1}^{i} \left(I(y,:) - \left\langle I(y,:) \right\rangle \right), \ i \in \{1, 2, \dots, N\}, \ y \in \{1, 2, \dots, M\},$$

где I(y,:) — *y*-я обрабатываемая строка заданного ЦИ; $\langle \cdot \rangle$ — операция усреднения.

Полученный вектор *C* разбивался на $N_s = [N/s]$ смежных блоков шириной *s* пикселей, где [·] — операция округления к ближайшему большему целому числу.

Для оценки вариаций $F^{2}(s, v)$ использовались стандартные методы:

$$F^{2}(s,v) = \frac{1}{s} \sum_{i=1}^{s} \{C[(v-1)s+i] - Q_{v}(i)\}^{2}, v \in \{1,...,N_{s}\},\$$

где Q_{ν} — полином, применяемый для компенсации детерминированных компонент кумулятивных сумм в ν -м блоке вектора C. Далее рассчитывалась усредненная вариация $F_q(s)$ значений вектора кумулятивных сумм C:

$$F_{q}(s) = \left\{ \frac{1}{2N_{s}} \sum_{\nu=1}^{2N_{s}} (F^{2}(s,\nu))^{\frac{q}{2}} \right\}^{\frac{1}{q}}, \ q \in \mathfrak{R} \setminus \{0\},$$

где *q* — масштабирующий параметр.

Значения обобщенных экспонент Хёрста (ОЭХ) h_q рассчитывались путем линейной аппроксимации зависимости $F_q = F(s^{h_q})$ согласно методу наименьших квадратов и использовались при построении спектра ОЭХ и мультифрактального спектра (МФС), которые связаны между собой преобразованием Лежандра:

$$f(s^{h_q}) = q(\alpha - h_q) + 1, \ \alpha = h_q + q \frac{d(h_q)}{dq},$$

где α — масштабирующая экспонента, используемая для оценки размерности Хаусдорфа $f(\alpha)$ подмножества флуктуаций значений вектора кумулятивных сумм *C*, которое характеризуется вероятностью *p* заполнения блоков разбиения вектора *C* — $p \propto s^{\alpha}$.

При проведении МФФА ЦИ значения параметра q принимали дискретные значения в интервале от $q_{\min} = (-20)$ до $q_{\max} = 20$ с шагом $\Delta_q = 0.25$. Построение спектра ОЭХ и МФС проведено путем сплайнинтерполяции с использованием рассчитанных дискретных значений h_q и $f(\alpha)$. Расширение диапазона значений параметра q является нецелесообразным, поскольку изменения ОЭХ $h_{q_{\min}}$ и $h_{q_{\max}}$ не превышают 10^{-3} . Для определения оптимального шага выборки строк ЦИ Δ_d^{opt} были исследованы изменения интегрального отклонения δ результатов МФФА (спектра ОЭХ) при вариации шага выборки Δ_d относительно случая обработки каждой строки ЦИ ($\Delta_d = 1$):

$$\delta(\Delta_d) = \sum_{i=1}^N |S_1(i \cdot \Delta_q) - S_{\Delta_d}(i \cdot \Delta_q)|,$$

где S_k — спектр ОЭХ, полученный при $\Delta_d = k$; $N = (q_{\text{max}} - q_{\text{min}})/\Delta_q$ — количество элементов спектра ОЭХ. Зависимость отклонения δ и времени расчета спектра ОЭХ отдельной строки ЦИ от шага выборки Δ_d представлена на рис. 2.

Рис. 2. Зависимость интегрального отклонения δ и времени расчета спектра ОЭХ отдельной строки изображения от шага выборки Δ_d : интегральное отклонение δ — левая ось ординат, непрерывная линия; время расчета спектра ОЭХ — правая ось ординат, штриховая линия

Значение шага выборки $\Delta_d = 1$ позволяет минимизировать интегральное отклонение δ ($\delta = 0|_{\Delta_d=1}$), но приводит к существенному возрастанию времени обработки всего изображения (рис. 2). Вследствие этого шаг Δ_d^{opt} был выбран равным 30, что дает возможность минимизировать как интегральное отклонение δ , так и время анализа ЦИ [10].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

В данной работе, используя результаты расчетов МФФА, произведена оценка средних значений параметров спектра ОЭХ и МФС — показателя Хёрста ($h_2 \equiv H$), ширины мультифрактального спектра ($\Delta_{\alpha} = \alpha_{max} - \alpha_{min}$) и других. Дисперсия полученных результатов не превышает 15% относительно средних значений мультифрактальных характеристик шумовых компонент ЦИ.

Системні дослідження та інформаційні технології, 2015, № 4

Были исследованы спектры ОЭХ и МФС при встраивании стегоданных как в пространственной области (LSB-методы), так и в области преобразования контейнера. Примеры спектров ОЭХ и МФС для пустого контейнера и стеганограмм, сформированных согласно методам Дея и Агарваля, а также LSB-метода, при двадцатипроцентном заполнении контейнера стегоданными, представлены на рис. 3.

Рис. 3. Результаты мультифрактального флуктуационного анализа незаполненного контейнера и стеганограмм, сформированных согласно методам Дея и Агарваля, а также LSB-метода при 20% степени заполнения: *а* — спектр обобщенных экспонент Хёрста; *б* — мультифрактальный спектр

Встраивание данных в ОПК ЦИ приводит к существенным изменениям корреляционных и фрактальных характеристик флуктуаций яркости пикселей ЦИ с малой амплитудой (рис. 3). При использовании метода Дея и Агарваля происходит, соответственно, сужение и расширение спектра МФС (рис. 3*б*).

На рис. 3 также приведены результаты МФФА для случая встраивания стегоданных в пространственной области ЦИ согласно LSB-методу. Характер изменений параметров шумов изображений, при использовании LSB-метода, существенно отличается от случая применения методов Дея и Агарваля. Для LSB-метода характерно сглаживание спектра ОЭХ (рис. 3a), смещение и сужение МФС (рис. 4δ), что дает возможность определить область скрытия сообщений.

В работе определены зависимости значений показателя Хёрста (ПХ) от степени заполнения контейнера для трех ЦИ стегоданных (рис. 4).

Как видно из рис. 4, даже в случае сильного заполнения контейнера (более 75%), изменения значений показателя Хёрста (ПХ) Δ_H являются незначительными как при использовании стандартных ($\Delta_H = 0,03$), так и специальных ($\Delta_H = 0,05$) типов преобразований ЦИ. Вследствие этого значительно снижается эффективность использования данного критерия для распознавания области встраивания стегоданных.

Рис. 4. Зависимости значений показателя Хёрста от степени заполнения контейнера стегоданными для случая скрытия сообщений с использованием метода Дея (a) и метода Агарваля (b)

В связи с низкой эффективностью применения ПХ для выявления стеганограмм и распознавания типа использованных преобразований при скрытии сообщений, были исследованы фрактальные свойства шумов ЦИ (ширина Δ_{α} МФС). Зависимость ширины МФС от степени заполнения контейнера стегоданными представлена на рис. 5.

Рис. 5. Зависимость ширины мультифрактального спектра флуктуаций яркости пикселей стеганограмм от степени заполнения контейнера стегоданными и скрытии сообщений с использованием метода Дея (a) и метода Агарваля (δ)

Встраивание данных в ОПК приводит к существенному изменению ширины МФС Δ_{α} (рис. 5). В случае использования метода Дея (рис. 5*a*) происходит уменьшение значений Δ_{α} (на 0,4 в случае 95%), а в случае метода Агарваля (рис. 5*б*) — увеличение ширины МФС (на 0,6 в случае 95%) относительно случая незаполненного контейнера. Различие в тенденциях

изменений параметра Δ_{α} при использовании стандартных и специальных типов преобразований ЦИ дает возможность распознавать область встраивания стегоданных в изображения.

По результатам анализа полученных данных выявлена зависимость значения параметра Δ_{α} при встраивании стегоданных согласно методу Дея от степени детализации стегоданных: при возрастании количества мелких деталей в стегоданных происходит уменьшение отклонения ширины МФС относительно случая незаполненного контейнера (рис. 5*a*). Данная особенность обусловлена тем, что при возрастании количества небольших деталей на встраиваемых изображениях происходит перераспределение энергии пикселей в области высоких частот.

выводы

В результате исследований возможности применения мультифрактального флуктуационного анализа для определения типа преобразований ЦИ, использованных при встраивании стегоданных в контейнеры на основе одноэтапных методов скрытия в ОПК, установлено, что:

1. Использование классического флуктуационного анализа для определения типа преобразования, использованного при встраивании стегоданных в контейнер, из-за слабых изменений показателя Хёрста является неэффективным.

2. На основе анализа результатов МФФА стеганограмм, возможно определение области преобразования и типа преобразования, использованного для встраивания стегоданных в ОПК.

3. В результате анализа ширины мультифрактального спектра возможно проведение оценки степени детализации стегоданных, встроенных в ОПК, при использовании стандартных преобразований ЦИ.

Полученные результаты могут быть использованы для повышения эффективности современных методов активного стегоанализа цифровых изображений.

ЛИТЕРАТУРА

- 1. Конахович Г., Пузыренко А. Компьютерная стеганография. Теория и практика. К.: МК-Пресс, 2006. 288 с.
- Ramkumar M. Data Hiding in Multimedia. Theory and Applications. Doctoral Dissertation, Department of ECE, New Jersey Institute of Technology. — University Heights, 1999. — 70 p.
- 3. *Katzenbeisser S., Petitcolas P.* Information Hiding Techniques for Steganography and Digital Watermarking. Boston: Artech House, 2000. 237 p.
- Черепахова К.В., Прогонов Д.О., Кущ С.М. Активний стегоаналіз повідомлень, прихованих в цифровому зображенні // Матеріали XII Всеукраїнської науково-практичної конференції студентів, аспірантів та молодих вчених «Теоретичні та прикладні проблеми фізики, математики та інформатики». — К.: ВПК «Політехніка», 2014. — С. 219–221.

Мультифрактальный флуктуационный анализ стеганограмм

- Dey N.A., Roy A.B., Dey S. novel Approach of Color Image Hiding using RGB Color Planes and DWT. // International Journal of Computer Applications. — 2011. — 36, № 5. — P. 19–24.
- 6. *Agarwal R., Santhanam M.S.* Digital watermarking in the singular vector domain // International Journal of Image and Graphics. 2008. **8**. P. 351–362.
- 7. Гонсалес Р., Вудс Р. Цифровая обработка изображений / Изд. 3-е, исправленное и дополненное. М.: Техносфера, 2012. 1104 с.
- 8. Голяндина Н.Э. Метод «Гусеница»-SSA: Анализ временных рядов. Учеб. пособие. СПб., 2004. 76 с.
- Kantelhardt J., Zschiegner S., Koscielny-Bunde E., Bunde A., Havlin S., Stanley E. Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series // Physica A. — 2002. — 316, Issue 1–4. — P. 87–114.
- Прогонов Д.О., Кущ С.М. Виявлення стеганограм з даними, прихованими в області перетворення цифрових зображень // Вісник Національного технічного університету України «Київський політеснічний інститут». Серія — Радіотехніка. Радіоапаратобудування. — 2014. — № 57. — С. 128–142.

Поступила 01.06.2014