

НОВІ МЕТОДИ В СИСТЕМНОМУ АНАЛІЗІ, ІНФОРМАТИЦІ ТА ТЕОРІЇ ПРИЙНЯТТЯ РІШЕНЬ

УДК 519/6

DOI: 10.20535/SRIT.2308-8893.2016.2.12

ПОСЛЕДОВАТЕЛЬНОСТИ ФУНКЦИЙ И РЯДЫ ТЕЙЛОРА С НЕЧЕТКИМ КОМПЛЕКСНЫМ АРГУМЕНТОМ

И.Я. СПЕКТОРСКИЙ

Рассмотрены функциональные последовательности $f_n(A)$ комплексных аналитических функций с нечетким комплексным числом A в качестве аргумента; предполагается сходимость $\lim_{n\to\infty} f_n(z) = f(z)$ и $\lim_{n\to\infty} f_n'(x) = f'(x)$ как равномерная на каждом круге внутри $\operatorname{Supp} A$. Вследствие аналитичности выполняются требования поточечной сходимости производных, а также конечности числа решений уравнения f(z) = w относительно z для каждого w на каждом круге внутри $\operatorname{supp} A$. Предложены достаточные условия сходимости $f_n(A)$ как поточечной сходимости последовательности функций принадлежности $\mu_{f_n(A)}(w)$: доказана сходимость $\lim_{n \to \infty} \mu_{f_n(A)}(w) = \mu_{f(A)}(w)$ в точках $w\in\mathbb{C}$, кроме таких w=f(z) , что z — точка разрыва $\mu_A(z)$, либо f'(z) = 0. Как частный случай последовательности $f_n(A)$ рассмотрено обобщение конструкции ряда Тейлора $f(z) = \sum_{i=0}^{\infty} \frac{f^{(i)}(z_0)}{i!} (z-z_0)^i$ для аналитической функции f(z) для случая нечеткого комплексного аргумента z=A. Сходимость ряда рассмотрена как поточечная сходимость последовательности функций принадлежности частичных сумм $\mu_{S_n(A)}(w)$, где $S_n(z) = \sum_{i=0}^n \frac{f^{(i)}(z_0)}{i!} (z - z_0)^i$.

ВВЕДЕНИЕ

Нечеткие числа как частный случай нечетких множеств представляют мощное средство математического моделирования в условиях неполной информации об исходных объектах. Так, в работах [1, 2] описывается применение аппарата нечетких множеств (в частности, нечетких чисел) для разработки экспертных систем, решения задачи распознавания образов, представления знаний в системах искусственного интеллекта. Активно развивается теория нечетких систем управления [3].

Принцип обобщения, сформулированный Л.А. Заде для произвольных нечетких множеств [1, 8], определяет действие произвольной числовой функции конечного числа аргументов на нечеткие числа. В частности, для случая нечетких чисел можно обобщить стандартные арифметические операции «+», «·», «—» и « /». В работах [8, 9] вводится понятие нечеткого комплексного числа.

Для нечетких чисел, включая комплексный случай, сохраняются законы коммутативности и ассоциативности операций «+»и «·», однако в общем случае не выполняется дистрибутивность «·» относительно «+» (алгебраические свойства нечетких чисел изложены в работах [5-7]).

Наличие ассоциативности «+» и «·» позволяет рассматривать степенные ряды с нечетким аргументом, трактуя сходимость конечных сумм ряда как сходимость последовательности функций принадлежности. В частности, это касается рядов Тейлора с нечетким аргументом и сходимости такого ряда (в определенном смысле) к значению исходной функции над заданным нечетким аргументом. Так, в работе [10] рассматриваются ряды Тейлора с нечетким аргументом с компактным носителем; сходимость таких рядов трактуется как сходимость множеств уровня функций принадлежности частичных сумм по метрике Хаусдорфа. Однако анализ поточечной сходимости последовательности функций принадлежности в ряде случаев может оказаться существенно проще, чем анализ сходимости соответствующих множеств уровня по метрике Хаусдорфа (см. работу [1]) для случая действительного нечеткого аргумента).

Цель работы — представить достаточные условия сходимости последовательности функций с нечетким комплексным аргументом в смысле поточечной сходимости последовательности функций принадлежности и применить полученный результат к сходимости частичных сумм ряда Тейлора с нечетким комплексным аргументом. Полученные результаты могут помочь аппроксимировать сложные нечеткие модели более простыми с возможностью предельного перехода в топологии поточечной сходимости.

В работе приводятся в основном известные сведения из теории нечетких комплексных чисел, необходимые для изложения основного результата, а также анализируется возможность предельного перехода в последовательности отображений с нечетким комплексным аргументом, рассматривается сходимость рядов Тейлора с нечетким комплексным аргументом как поточечной сходимости функций принадлежности для частичных сумм.

ПОНЯТИЕ НЕЧЕТКОГО КОМПЛЕКСНОГО ЧИСЛА. ВЫПУКЛЫЕ НЕЧЕТКИЕ КОМПЛЕКСНЫЕ ЧИСЛА

Нечеткое комплексное число A является частным случаем нечеткого множества и определяется своей функцией принадлежности $\mu_A:\mathbb{C} \to [0,1]$. Носителем нечеткого комплексного числа A называют множество supp $A = \{z \in \mathbb{C}: \mu_A(z) > 0\}$. Для заданного $\alpha \in (0;1]$ рассматривают множество уровня $[A]_\alpha = \{z \in \mathbb{C}: \mu_A(z) \geq \alpha\}$. Очевидно соотношение $\sup A = \bigcup_{\alpha > 0} [A]_\alpha$. Легко понять, что совокупность множеств уровня одно-

значно определяет функцию принадлежности μ_A (а значит и само нечеткое комплексное число A), так как $\mu_A^{-1}(\alpha_0) = \{z \in \mathbb{C} : \mu_A(z) = \alpha_0\} = [A]_{\alpha_0} \setminus \bigcup_{\alpha > \alpha_0} [A]_{\alpha}$ для всех $0 < \alpha_0 \le 1$.

Нечеткое комплексное число A называют *нормальным*, если $\mu_A(z)=1$ для некоторого $z\in\mathbb{C}$. Так, нечеткое комплексное число A с функцией принадлежности $\mu(z)=\begin{cases} 1-|z|, & |z|\leq 1;\\ 0, & |z|>1 \end{cases}$ является нормальным, Также нормально нечеткое комплексное число с функцией принадлежности $\mu(z)=1$ $(z\in\mathbb{C})$, однако нечеткое комплексное число с функцией принадлежности $\mu(z)=0$ $(z\in\mathbb{C})$ не является нормальным. Заметим, что нормальность иногда требуется при определении нечеткого числа как действительного, так и комплексного, например, [8–10].

Важный класс представляют нечеткие комплексные числа с полунепрерывной сверху функцией принадлежности 1 . Полунепрерывность функции μ_A , которая определяется условием

$$\left(\lim_{n\to\infty}z_n=z\right) \Longrightarrow \left(\overline{\lim_{n\to\infty}}\mu_A(z_n) \le \mu_A(z)\right),$$

можно охарактеризовать в терминах множеств уровня нечеткого комплексного числа A.

Лемма 1. Функция принадлежности нечеткого комплексного числа A полунепрерывна сверху тогда и только тогда, когда все множества уровня $[A]_{\alpha}$ ($\alpha \in (0;1]$) замкнуты.

Утверждение леммы (в эквивалентной формулировке) доказано, например, в работе [12, с. 385–388], а в [13] приведено в виде упражнения.

Следствие. Пусть функция принадлежности нечеткого комплексного числа A полунепрерывна сверху. Тогда компактность множества уровня $[A]_{\alpha}$ при $0 < \alpha \le 1$ эквивалентна ограниченности $[A]_{\alpha}$

Пример 1. Рассмотрим нечеткое комплексное число A с функцией при-

надлежности
$$\mu_A(z) = \begin{cases} \mid z \mid, & \mid z \mid < 0.3; \\ \mid z \mid + 0.2; & 0.3 \leq \mid z \mid \leq 0.8; \\ 1, & z > 0.8. \end{cases}$$

Очевидно, что $\mu_A(z)$ полунепрерывна сверху, и все множества уровня $[A]_{\alpha}$ ($\alpha \in (0;1]$) замкнуты. Так, замкнутым является $[A]_{0,4} = \{z : |z| \geq 0,3\}$.

Пример 2. Рассмотрим нечеткое комплексное число A с функцией принадлежности $\mu_A(z) = e^{-|z|^2}$. Функция $\mu_A(z)$ полунепрерывна сверху (и даже непрерывна), все множества уровня $[A]_{\alpha}$ ($\alpha \in (0;1]$) ограничены и в силу следствия из леммы 1 компактны. Отметим, что носитель $\sup A = \mathbb{C}$ при этом неограничен.

 $^{^1}$ Здесь и далее под непрерывностью и полунепрерывностью сверху подразумеваем непрерывность (полунепрерывность сверху) на $\mathbb C$.

Заметим, что при определении нечеткого комплексного числа, наряду с нормальностью, иногда требуется полунепрерывность сверху для функции принадлежности, а также накладываются условия связности для множеств уровня [8, 9].

ОТОБРАЖЕНИЯ НЕЧЕТКИХ КОМПЛЕКСНЫХ ЧИСЕЛ

Пусть $f:\mathbb{C}^n\supset D\to\mathbb{C}$ — функция с областью определения $D_f\subset\mathbb{C}^n$, $n\geq 1^2$. В соответствии с принципом обобщения Заде [1–10] образ набора нечетких комплексных чисел A_1,A_2,\ldots,A_n при отображении f определяется как нечеткое комплексное число $B=f(A_1,A_2,\ldots,A_n)$ с функцией принадлежности

$$\mu_R(w) =$$

$$= \begin{cases} \sup \min \left(\mu_{A_1}(z_1), \ldots, \mu_{A_n}(z_n)\right), & \text{если} \\ (z_1, \ldots, z_n) \in D_f : \\ f(z_1, \ldots, z_n) = w \end{cases} \qquad \exists (z_1, \ldots, z_n) \in D_f : f(z_1, \ldots, z_n) = w; \\ 0, & \text{если} \\ \forall (z_1, \ldots, z_n) \in D_f : f(z_1, \ldots, z_n) \neq w. \end{cases}$$

Пример 3. Пусть $f: \mathbb{C} \to \mathbb{C}$, f(z) = -z. Тогда в соответствии с равенством (1) для произвольного нечеткого комплексного числа A получаем функцию принадлежности для нечеткого комплексного числа $-A: \mu_{-A}(w) = \mu_A(-w)$ ($w \in \mathbb{C}$).

Пример 4. Пусть $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2$. Тогда в соответствии с равенством (1) для произвольного нечеткого комплексного числа A получаем функцию принадлежности для $A^2: \mu_{A^2}(w) = \max(\mu_A(\sqrt{w}), \mu_A(-\sqrt{w}))$ ($w \in \mathbb{C}$).

Пример 5. Пусть $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^z$. Тогда в соответствии с равенством (1) для произвольного нечеткого комплексного числа A получаем функцию μ_{a^A} :

$$\mu_{e^A}(w) = \begin{cases} \sup \{ \mu_A(\ln r + i(\varphi + 2\pi k) : k \in \mathbb{Z} \}, & w \neq 0; \\ 0, & w = 0, \end{cases}$$

где $w = re^{i\phi}$, $r \ge 0$, $\phi \in (-\pi; \pi]$.

Пример 6. Пусть $f:\mathbb{C}^2 \to \mathbb{C}, f(z_1,z_2)=z_1+z_2$. Тогда в соответствии с равенством (1) для произвольных нечетких комплексных чисел A_1, A_2 получаем функцию принадлежности для $A_1+A_2: \mu_{A_1+A_2}(w)=$ = $\sup_{\substack{(z_1,z_2)\in\mathbb{C}^2:\\z_1+z_2=w}} \min \Big(\mu_{A_1}(z_1),\mu_{A_2}(z_2)\Big).$

 $^{^2}$ Здесь и далее символы « \subset » и « \supset » допускают равенство множеств.

Из примеров 3–6 видно, что при использовании равенства (1) необходимо решать уравнение $f(z_1,...,z_n)=w$ для каждого $w\in\mathbb{C}$. Если это уравнение имеет небольшое количество решений (примеры 3 и 4), равенство (1) немедленно дает значение $\mu_B(w)$. Но прямое использование равенства (1) весьма проблематично, если уравнение $f(z_1,...,z_n)=w$ имеет бесконечно много решений (примеры 5 и 6), что особенно типично при $n\geq 2$ (пример 6). Приводимая ниже теорема 1 (с предварительной технической леммой) позволяет вычислять множества уровня нечеткого комплексного числа B непосредственно по множествам уровня $A_1,A_2,...,A_n$, минуя прямое использование равенства (1).

Лемма 2. Пусть все множества уровня нечетких комплексных чисел $A_1, A_2, ..., A_n$ компактны и функция $f: \mathbb{C}^n \to \mathbb{C}$ непрерывна на \mathbb{C}^n . Тогда равенство (1) можно записать в виде

$$\mu_B(w) =$$

$$= \begin{cases} \max_{\substack{(z_1, \dots, z_n) \in \mathbb{C}^n : \\ f(z_1, \dots, z_n) = w}} \min(\mu_{A_1}(z_1), \dots, \mu_{A_n}(z_n)), & \text{если} \\ \exists (z_1, \dots, z_n) \in \mathbb{C}^n : f(z_1, \dots, z_n) = w; \\ 0, & \text{если} \\ \forall (z_1, \dots, z_n) \in \mathbb{C}^n : f(z_1, \dots, z_n) \neq w. \end{cases}$$

Доказательство. Необходимо доказать, что супремум в правой части равенства (1) достигается и поэтому может быть заменен на максимум.

Пусть $\min(\mu_{A_1}(z_1),...,\mu_{A_n}(z_n))=0$ для любого набора $(z_1,...,z_n)\in\mathbb{C}^n$ такого, что $f(z_1,...,z_n)=w$. Тогда $\mu_B(w)=0$ и утверждение леммы справедливо. Аналогично, если $f(z_1,...,z_n)\neq w$ для любого набора $(z_1,...,z_n)\in\mathbb{C}^n$, также имеем $\mu_B(w)=0$ и утверждение леммы справедливо.

Наконец, пусть $\min(\mu_{A_1}(z_1),\ldots,\mu_{A_n}(z_n))=\alpha>0$ и $f(z_1,\ldots,z_n)=w$ для некоторого набора $(z_1,\ldots,z_n)\in\mathbb{C}^n$. Тогда равенство (1) можно записать в виде

$$\mu_B(w) = \sup_{\substack{(z_1,\ldots,z_n) \in ([A_1]_\alpha \times [A_2]_\alpha \times \cdots \times [A_n]_\alpha):\\f(z_1,\ldots,z_n) = w}} \min\left(\mu_{A_1}(z_1),\ldots,\mu_{A_n}(z_n)\right).$$

Поскольку множество $X_{\alpha}=[A_1]_{\alpha}\times[A_2]_{\alpha}\times\cdots\times[A_n]_{\alpha}$ компактно в \mathbb{C}^n , а множество $f^{-1}(w)=\{(z_1,\ldots,z_n)\in\mathbb{C}^n:f(z_1,\ldots,z_n)=w\}$ замкнуто вследствие непрерывности f, получаем ограниченность и замкнутость (а значит и компактность³) множества $X_{\alpha}\cap f^{-1}(w)$. Наконец, функция $\min(\mu_{A_1}(z_1),\ldots$

 $^{^3}$ В конечномерном пространстве, в частности в \mathbb{R}^n и \mathbb{C}^n , компактность множества эквивалентна его ограниченности и замкнутости, однако в бесконечномерных метрических пространствах ограниченность и замкнутость являются лишь необходимыми, но не достаточными условиями компактности.

 $...,\mu_{A_n}(z_n)$) полунепрерывна сверху на \mathbb{C}^n и аналогично теореме Вейерштрасса [12, 13] достигает максимума на компакте $X_\alpha \cap f^{-1}(w)$. \square

Теорема 1. Пусть все множества уровня нечетких комплексных чисел $A_1,A_2,...,A_n$ компактны и $f:\mathbb{C}^n\to\mathbb{C}$ непрерывна на \mathbb{C}^n . Тогда при $0<\alpha\le 1$ множества уровня $[B]_\alpha$ равно образу множеств уровня $[A_1]_\alpha,[A_2]_\alpha,...,[A_n]_\alpha$:

$$[B]_{\alpha} = f([A_1]_{\alpha}, [A_2]_{\alpha}, \dots, [A_n]_{\alpha}) =$$

$$= \{ f(x_1, \dots, x_n) : (x_1, \dots, x_n) \in ([A_1]_{\alpha} \times [A_2]_{\alpha} \times \dots \times [A_n]_{\alpha}) \} .$$

Доказательство. Зафиксируем $0 < \alpha \le 1$. Поскольку условия леммы 2 выполнены, можем, воспользовавшись равенством (2), записать эквивалентность

$$(w \in [B]_{\alpha}) \Leftrightarrow \left(\exists (z_1, \dots, z_n) \in \mathbb{C}^n : \begin{cases} f(z_1, \dots, z_n) = w, \\ \mu_{A_1}(z_1) \ge \alpha; \\ \vdots \\ \mu_{A_n}(z_n) \ge \alpha. \end{cases} \right) \Leftrightarrow$$

$$\Leftrightarrow \left(w \in f([A_1]_{\alpha}, [A_2]_{\alpha}, \dots, [A_n]_{\alpha})\right),$$

что доказывает утверждение теоремы.

□

Пример 7. Рассмотрим нечеткие комплексные числа A_1 и A_2 с функциями принадлежности

$$\mu_{A_1}(z_1) = \begin{cases} 1 - \frac{|z_1 - c_1|}{\delta_1}, & |z_1 - c_1| \le \delta_1; \\ 0, & |z_1 - c_1| > \delta_1, \end{cases}$$

$$\mu_{A_2}(z_2) = \begin{cases} 1 - \frac{|z_2 - c_2|}{\delta_2}, & |z_2 - c_2| \le \delta_2; \\ 0, & |z_2 - c_2| > \delta_2, \end{cases}$$

где $c_i \in \mathbb{C}$, $\delta_i > 0$ ($i \in \{1;2\}$). Поскольку все множества уровня A_1 и A_2 компактны, а отображение $f(z_1,z_2) = z_1 + z_2$ непрерывно на \mathbb{C}^2 , для вычисления множеств уровня нечеткого комплексного числа $B = A_1 + A_2$ можем использовать теорему 1. Для A_1 и A_2 имеем $[A_i]_{\alpha} = \{z \in \mathbb{C} : |z - c_i| \le \delta_i\}$ ($i \in \{1;2\}$) и для B получаем:

$$[B]_{\alpha} = [A_1]_{\alpha} + [A_2]_{\alpha} = \{z \in \mathbb{C} : |z - (c_1 + c_2)| \le \delta_1 + \delta_2\},$$

где $0<\alpha \le 1$. Теперь по виду $[B]_{\alpha}$ $(0<\alpha \le 1)$ легко определить функцию принадлежности нечеткого комплексного числа $B=A_1+A_2$:

$$\mu_{A_1+A_2}(w) = \begin{cases} 1 - \frac{\left|w - (c_1 + c_2)\right|}{\delta_1 + \delta_2}, & \left|w - (c_1 + c_2)\right| \le \delta_1 + \delta_2; \\ 0, & \left|w - (a_1 + a_2)\right| > \delta_1 + \delta_2. \end{cases}$$

Пример 8. Рассмотрим нечеткие комплексные числа A_1 и A_2 с функциями принадлежности

$$\mu_{A_1}(z_1) = \begin{cases} \frac{x_1}{x_1 + 1}, & x_1 \ge 0; \\ 0, & x_1 < 0, \end{cases} \quad \mu_{A_2}(z_2) = \begin{cases} \frac{x_2}{x_2 - 1}, & x_2 \le 0; \\ 0, & x_2 > 0, \end{cases}$$
$$x_i = \operatorname{Re} z_i > 0 \ (i \in \{1; 2\}).$$

Поскольку множества уровня нечетких комплексных чисел A_1 и A_2 неограничены (а значит и некомпактны), условия теоремы 1 (как и леммы 2) не выполнены. Применяя формулу (1) (см. также пример 6), получаем:

$$\mu_{A_1+A_2}(w) = \sup_{\substack{(z_1,z_2) \in \mathbb{C}^2 : \\ z_1+z_2=w}} \min(\mu_{A_1}(z_1),\mu_{A_2}(z_2)) = \sup_{x_1 \ge \max(0,u)} \min\left(\frac{x_1}{x_1+1},\frac{u-x_1}{u-x_1-1}\right) = 1$$

для всех $w \in \mathbb{C}$, $u = \operatorname{Re} w$. Заметим, что равенство $[A_1 + A_2]_{\alpha} = [A_1]_{\alpha} + [A_2]_{\alpha}$, постулируемое теоремой 1, выполняется для всех $\alpha \in (0;1)$, однако не выполняется для $\alpha = 1$: $[A_1 + A_2]_1 = \mathbb{C}$, $[A_1]_1 + [A_2]_1 = \emptyset$.

Важным фактом для нечетких комплексных чисел является сохранение полунепрерывности сверху для их функций принадлежности при непрерывном отображении. Докажем соответствующую теорему.

Теорема 2. Пусть A_1,A_2,\ldots,A_n — нечеткие комплексные числа с полунепрерывными сверху функциям принадлежности, все множества уровня A_1,A_2,\ldots,A_n ограничены, функция $f:\mathbb{C}^n\to\mathbb{C}$ непрерывна на \mathbb{C}^n и $B=f(A_1,A_2,\ldots,A_n)$. Тогда μ_B также полунепрерывна сверху.

Доказательство. Пусть функции μ_{A_1} , μ_{A_2} ,..., μ_{A_n} полунепрерывны сверху. Тогда в соответствии с леммой 1 множества уровня $[A_1]_{\alpha}$, $[A_2]_{\alpha}$,..., $[A_n]_{\alpha}$ замкнуты для любого $\alpha \in (0;1]$. По теореме 1 для произвольного $0 < \alpha \le 1$ имеем равенство $[B]_{\alpha} = f([A_1]_{\alpha}, [A_2]_{\alpha}, ..., [A_n]_{\alpha})$, откуда вследствие непрерывности f и компактности множеств $[A_1]_{\alpha}$, $[A_2]_{\alpha}$,... ..., $[A_n]_{\alpha}$ множество $[B]_{\alpha}$ также компактно (а значит и замкнуто). Таким образом, все множества уровня нечеткого комплексного числа B замкнуты, и в соответствие с леммой 1 функция μ_B полунепрерывна сверху. \square

Аналог теоремы 1 доказан в работе [10] для действительных нечетких чисел и непрерывной унарной функции f(x), сохранение выпуклости при операциях «+», «—» и «·» доказано, например, в работе [5].

Пример 9. Рассмотрим нечеткое комплексное число A с функцией принадлежности $\mu_A(z) = \begin{cases} 1 - \frac{|z|}{\delta}, & |z| \leq \delta; \\ 0, & |z| > \delta. \end{cases}$

Непосредственно из равенства (1) (см. также пример 4) найдем $\mu_{|A|}(z)$:

$$\mu_{|A|}(z) = \begin{cases} 1 - \frac{z}{\delta}, & z \in [0; \delta); \\ 0, & z \notin [0; \delta). \end{cases}$$

Отметим, что функция $\mu_{|A|}(z)$ полунепрерывна сверху, но ненепрерывна при непрерывной функции $\mu_A(z)$ и непрерывном отображении f(z) = |z|.

Пример 10. Рассмотрим нечеткое комплексное число A с функцией принадлежности $\mu(z)=1$ ($z\in\mathbb{C}$). Тогда функция $\mu_{e^A}(z)=\begin{cases} 1,\ z\neq 0;\\ 0,\ z=0 \end{cases}$ не полунепрерывна сверху; теорема 2 не применима, так как множества уровня нечеткого комплексного числа A неограничены.

Замечание 1. Теоремы 1 и 2 легко обобщить на случай, когда f непрерывна на $\operatorname{supp} A_1 \times \operatorname{supp} A_2 \times \cdots \times \operatorname{supp} A_n$. Так, если функции принадлежности нечетких комплексных чисел A_1 и A_2 полунепрерывны сверху и $0 \not\in \operatorname{supp} A_2$, то функция $\mu_{\underline{A_1}}$ также полунепрерывна сверху.

Замечание 2. Очевидно, что свойство нормальности сохраняется при произвольном отображении: если нечеткие комплексные числа $A_1, A_2, ..., A_n$ нормальны и $f: \mathbb{C}^n \to \mathbb{C}$ определено на \mathbb{C}^n , то $f(A_1, A_2, ..., A_n)$ также нормально.

Замечание 3. В отличие от действительного случая [5, 10, 11] выпуклость множеств уровня нечетких комплексных чисел при произвольном непрерывном отображении может не сохраняться. Так, для нечеткого комплексного числа с функцией принадлежности $\mu_A(z) = \begin{cases} 1, & z = 1+it, \, t \in [0;2\pi); \\ 0, & \operatorname{Re} z \neq 1 \, \text{ или } \operatorname{Im} z \not\in [0;2\pi) \end{cases}$ все множества уровня имеют вид $\{z \in \mathbb{C} : \operatorname{Re} z = 1, \operatorname{Im} z \in [0;2\pi)\}$, т.е. выпуклы, однако для нечеткого комплексного числа $\mu_{e^A}(z) = \begin{cases} 1, & z = e^{i\phi}, \, \phi \in [0;2\pi); \\ 0, & |z| \neq 1 \end{cases}$ все множества уровня являются окружностью $\{z \in \mathbb{C} : |z| = 1\}$, т.е. не выпуклы.

ПОСЛЕДОВАТЕЛЬНОСТЬ ОТОБРАЖЕНИЙ НЕЧЕТКИХ КОМПЛЕКСНЫХ ЧИСЕЛ. ПРЕДЕЛЬНЫЙ ПЕРЕХОД

Вспомогательные утверждения

Докажем несколько утверждений, обобщающих известные факты из действительного анализа на комплексный случай. Здесь все аналитические функции предполагаются однозначными.

Длина кривой в \mathbb{C}^2 , заданной аналитической функцией. Пусть функция $f:D\to\mathbb{C}$ аналитична на открытом множестве $D\subset\mathbb{C}$. Тогда кривую в \mathbb{C}^2 $\gamma:t\mapsto (z(t),f(z(t))),\ z(t)\in D$, $t\in[t_1;t_2]$ можно рассматривать как кривую в $\mathbb{R}^4:\ t\mapsto (x(t),y(t),u(x(t),y(t)),v(x(t),y(t)))$, где $x=\operatorname{Re} z,\ y=\operatorname{Im} z,\ u=\operatorname{Re} f,\ v=\operatorname{Im} f$ Обозначим через $|\gamma|$ длину кривой γ .

Лемма 3. Пусть z(t) дифференцируема для $t \in [t_1; t_2]$. Тогда

$$|\gamma| = \int_{t_1}^{t_2} \sqrt{1 + |f'(z(t))|^2} |z'(t)| dt$$
.

Доказательство. Используя формулу для длины кривой в \mathbb{R}^n , запишем:

$$\left|\gamma\right| = \int_{t_1}^{t_2} \sqrt{A(t)} dt, \text{ где } A(t) = \left(u_x'(x(t), y(t))x'(t)\right)^2 + \left(u_y'(x(t), y(t)y'(t))\right)^2 + \left(v_x'(x(t), y(t))x'(t)\right)^2 + \left(v_y'(x(t), y(t))y'(t)\right)^2 + \left(x'(t)\right)^2 + \left(y'(t)\right)^2.$$

Из условий Коши–Римана аналитичности f [14, 15] получаем

$$A(t) = ((u'_{x}(x(t), y(t)))^{2} + (v'_{x}(x(t), y(t)))^{2} + 1))((x'(t))^{2} + (y'(t))^{2}).$$

Наконец, учитывая равенство $f' = u'_x + iv'_x$ [14, 15], окончательно получаем

$$A(t) = (1 + |f'(z(t))|^2)|z'(t)|^2,$$

что доказывает утверждение леммы.

□

Область определения обратной функции. Известно, что функция $f:D\to\mathbb{C}$, аналитичная на открытом множестве $D\subset\mathbb{C}$, обратима в некоторой окрестности точки $z_0\in D$ тогда и только тогда, когда $f'(z_0)\neq 0$. При этом, в отличие от функций на \mathbb{R} , комплексная функция может не быть обратимой на всей окрестности z_0 , где $f'(z_0)\neq 0$. Так, функция $f(z)=e^z$ аналитична на \mathbb{C} и $f'(z)\neq 0$ для всех $z\in\mathbb{C}$, однако f^{-1} определена не на всем \mathbb{C} вследствие периодичности исходной функции: $f(z)=f(z+2\pi i)$.

Пусть $z_0 \in D$ и $f'(z_0) \neq 0$. Для оценки области определения f^{-1} , пользуясь непрерывностью f(z) в D, выберем такое r>0, что $f(z) \neq 0$ при $0<\left|z-z_0\right| \leq r$, и согласно теореме Вейерштрасса о функции, непрерывной на компакте, можем ввести $\mu=\min\left\{\left|f(z)-f(z_0)\right|:\left|z-z_0\right|=r\right\}>0$.

Лемма 4. Функция f^{-1} определена в круге $F = \{w: \left|w-f(z_0)\right| < \mu\}$ и $f^{-1}(F) \subset E = \{z: \left|z-z_0\right| < r\}$.

Доказательство (основано на идее из работы [14, с. 210–213]). Функция $f(z)-f(z_0)$ имеет в E лишь один нуль: $z=z_0$. Зафиксируем $\xi \in F$ и рассмотрим функцию $\widetilde{f}(z)=f(z)-\xi$. Поскольку $|f(z_0)-\xi|<\mu\le |f(z)-f(z_0)|$ для $|z-z_0|=r$, к функции $\widetilde{f}(z)=(f(z)-f(z_0))+(f(z_0)-\xi)$ применима теорема Руше: $\widetilde{f}(z)$ и $f(z)-f(z_0)$ имеют одинаковое количество нулей (ровно один нуль) внутри круга E. Таким образом, f(z) принимает каждое значение $\xi \in F$ в точности для одного $z \in E$ и $f^{-1}(w)$ определена для каждого $w \in F$, причем $f^{-1}(w) \in E$.

Сходимость последовательности обратных функций

Рассмотрим последовательность функций $f_n:D\to\mathbb{C}$ ($n\ge 1$), аналитических на открытом множестве $D\subset\mathbb{C}$. Также предполагаем сходимость $\lim_{n\to\infty} f_n(z)=f(z)$ для всех $z\in D$, где функция $f:D\to\mathbb{C}$ аналитична на

$$D\subset\mathbb{C}$$
 . Зафиксировав $z_0\in D$, введем $\phi(z)=\frac{f(z)-f(z_0)}{z-z_0}$ и $\phi_n(z)=\frac{f_n(z)-f_n(z_0)}{z-z_0}$ ($n\ge 1$), доопределив $\phi(z_0)=f'(z_0)$ и $\phi_n(z_0)=f'_n(z_0)$ ($n\ge 1$).

Лемма 5. Пусть r>0 и $\lim_{n\to\infty} f_n(z)=f(z)$, причем сходимость равномерна на $\overline{E}=\{z:|z-z_0|\le r\}\subset D$. Тогда $\lim_{n\to\infty} f_n'(z_0)=f'(z_0)$, $\lim_{n\to\infty} \varphi_n(z)=\varphi(z)$, причем сходимость $\varphi_n(z)$ ($n\ge 1$) равномерна на \overline{E} .

Доказательство. Сходимость $\lim_{n\to\infty} f_n'(z_0) = f'(z_0)$ легко получить, применяя формулу Коши для производных [14, 15] и учитывая равномерную на \overline{E} сходимость $\lim_{n\to\infty} f_n(z) = f(z)$: $f_n'(z_0) - f'(z_0) = \frac{1}{2\pi i} \oint_{\gamma} (f_n(z) - f(z)) dz \xrightarrow[n\to\infty]{} 0$, где контур $\gamma = \{z : |z-z_0| = \frac{1}{2}r\}$ ориентирован против часовой стрелки.

Заметим, что $\lim_{n\to\infty} \varphi_n(z) = \varphi(z)$ для всех $z\in \overline{E}$, причем сходимость равномерна в любом кольце $0<\delta<|z-z_0|\le r$. Равномерную на \overline{E} сходимость $\lim_{n\to\infty} \varphi_n(z) = \varphi(z)$ в малой окрестности z_0 можно доказать, рассмотрев разложение в ряд Тейлора $f_n(z) = f_n(z_0) + \frac{1}{k!} \sum_{k=1}^{\infty} f_n^{(k)}(z_0)(z-z_0)^k$, $|z-z_0|<\delta$ при достаточно малом $\delta\in(0;r]$. Тогда $\varphi_n(z)=f_n'(z_0)+\frac{1}{k!} \sum_{k=2}^{\infty} f_n^{(k)}(z_0)(z-z_0)^{k-1}$ и, используя неравенство Коши для коэффициентов ряда Тейлора [14, 15], $|\varphi_n(z)-f_n'(z_0)|\le \sum_{k=2}^{\infty} M_n(\delta)(z-z_0)^{k-1}$, где $M_n(\delta)=\max_{|z-z_0|=\delta} |f_n(z)|$. Поскольку сходимость f_n $(n\ge 1)$ на \overline{E} равномерная, существует конечное $M(\delta)=\sup_{n\ge 1} M_n(\delta)$. Таким образом, для произвольного $\varepsilon>0$ можем выбрать $0<\delta_0<\delta$ так, чтобы $|\varphi_n(z)-f_n'(z_0)|\le \frac{1}{3}\varepsilon$ при $|z-z_0|\le \delta_0$ для всех $n\ge 1$, и такое $N\ge 1$, что $|f'(z)-f_n'(z_0)|\le \frac{1}{3}\varepsilon$ при $|z-z_0|\le \delta_0$ и $n\ge N$. Поскольку $\lim_{n\to\infty} \varphi_n(z)=\varphi(z)$ $(z\in \overline{E})$ и $\lim_{n\to\infty} f_n'(z_0)=$

 $=f'(z_0)$, переходим в неравенстве $\left|\phi_n(z)-f_n'(z_0)\right|\leq \frac{1}{3}\epsilon$ к пределу по $n o\infty$, получая $\left|\phi(z)-f'(z_0)\right|\leq \frac{1}{3}\epsilon$ при $\left|z-z_0\right|\leq \delta_0$. Окончательно

$$|\varphi_n(z) - \varphi(z)| \le |\varphi_n(z) - f_n'(z_0)| + |f_n'(z_0) - f'(z_0)| + |f'(z_0) - \varphi(z)| \le \varepsilon$$

при $|z-z_0| \le \delta_0$ и $n \ge N$, что завершает доказательство леммы. \square

Лемма 6. Пусть $f'(z_0) \neq 0$, r > 0, сходимость $\lim_{n \to \infty} f_n(z) = f(z)$ равномерна на $\overline{E} = \{z : |z-z_0| \leq r\}$, $\varphi(z) \neq 0$ при $z \in \overline{E}$. Тогда найдется такое $N \geq 1$, что $W = \bigcap_{n=N}^{\infty} f_n(\overline{E})$ содержит некоторую окрестность W_0 точки $f(z_0)$, определены $f_n^{-1} : W_0 \to E = \{z : |z-z_0| < r\}$ $(n \geq 1)$, причем $\lim_{n \to \infty} f_n^{-1}(w) = f^{-1}(w)$ для всех $w \in W_0$.

Доказательство. В соответствие с леммой 4 функция f^{-1} определена в круге $F = \{w: \left|w - f(z_0)\right| < \mu\}$, где $\mu = \min\{\left|f(z) - f(z_0)\right| : |z - z_0| = r\} > 0$, причем $f^{-1}(w) \in E$ для всех $w \in F$. Вследствие компактности \overline{E} и непрерывности $\phi(z)$ и f'(z) на \overline{E} существует $\delta = \min(\{|\phi(z)|, |f'(z)| : z \in \overline{E}\}) > 0$ и (в соответствие с леммой 5) равномерной на \overline{E} сходимости $\lim_{n \to \infty} \phi_n(z) = \phi(z)$ и сходимости $\lim_{n \to \infty} f'_n(z_0) = f'(z_0)$ можем выбрать такое $N_1 \ge 1$, что $|\phi_n(z)| \ge \delta/2 > 0$ и $|f'_n(z)| \ge \delta/2 > 0$ для всех $n \ge N_1$ при $z \in \overline{E}$.

Учитывая равномерную на \overline{E} сходимость $\lim_{n\to\infty} f_n(z)=f(z)$, можем выбрать $N_2\geq N_1$ так, что $\min\{\left|f_n(z)-f_n(z_0)\right|:|z-z_0|=r\}\geq \frac{2}{3}\mu>0$ для всех $n\geq N_2$. Наконец выберем $N\geq N_2$ так, что $\left|f_n(z_0)-f(z_0)\right|\leq \frac{1}{3}\mu$ для всех $n\geq N$. Теперь в соответствие с леммой 4 каждая f_n^{-1} $(n\geq N)$ определена в круге $F_n=\{w:\left|w-f_n(z_0)\right|<\frac{2}{3}\mu\}$ и можно выбрать $W_0=\{w:\left|w-f(z_0)\right|<<\frac{1}{3}\mu\}$, при этом $W_0\subset F_n\subset F$ для всех $n\geq N$.

Введя $\hat{w}\in W_0$, $\hat{z}=f^{-1}(\hat{w})$, $z_n=f_n^{-1}(\hat{w})$ и $w_n=f_n(\hat{z})$, для $n\geq N$ получаем

$$\begin{split} \left| f_n^{-1}(\hat{w}) - f^{-1}(\hat{w}) \right| &= \left| (z_n, \hat{w}) - (\hat{z}, \hat{w}) \right| = \\ &= \left| (z_n, \hat{w}) - (\hat{z}, \hat{w}) + (\hat{z}, w_n) - (\hat{z}, w_n) \right| \leq \left| (z_n, \hat{w}) - (\hat{z}, w_n) \right| + \left| w_n - \hat{w} \right|, \end{split}$$

причем расстояние $|(z_n,w_0)-(z_0,w_n)|$ в \mathbb{C}^2 можно, применяя лемму 3 для функции $f^{-1}(w)$, ограничить длиной кривой $\gamma:t\mapsto (f_n^{-1}(w_0+t(w_n-w_0)),$ $w_0+t(w_n-w_0))$, $t\in[0;1]$, соединяющей точки $(z_n,\hat{w})=(f_n^{-1}(\hat{w}),\hat{w})$ и $(\hat{z},w_n)=(f_n^{-1}(w_n),w_n)$):

$$\begin{aligned} \left| (z_n, \hat{w}) - (\hat{z}, w_n) \right| &= \left| \int_0^1 \sqrt{1 + ((f_n^{-1})'(\hat{w} + t(w_n - \hat{w})))^2} \left| (w_n - \hat{w}) \right| dt \right| \le \\ &\le \sqrt{1 + \frac{4}{\delta^2}} \left| w_n - \hat{w} \right|. \end{aligned}$$

Таким образом, для $n \ge N$ окончательно имеем

$$\left| f_n^{-1}(\hat{w}) - f^{-1}(\hat{w}) \right| \le \left(1 + \frac{4}{\delta^2} \right) \left| w_n - \hat{w} \right| + \left| w_n - \hat{w} \right| = \left(2 + \frac{4}{\delta^2} \right) \left| f_n(\hat{z}) - f(\hat{z}) \right|,$$

что, поскольку $\lim_{n\to\infty} f_n(\hat{z}) = f(\hat{z})$, доказывает сходимость $\lim_{n\to\infty} f_n^{-1}(\hat{w}) = f^{-1}(\hat{w})$. \square

Сходимость функций принадлежности

Для функции $f:D\to\mathbb{C}$, аналитической на открытом множестве $D\subset\mathbb{C}$, и нечеткого комплексного числа A с носителем $\mathrm{supp}\,A\subset D$ введем обозначения:

$$X_{f,\operatorname{supp}A}=\{z\in\operatorname{supp}A:f'(z)=0\};$$

$$X_{A,\operatorname{supp}A}=\{z\in\operatorname{supp}A:z\,\longrightarrow\,\operatorname{точка}\;\mathrm{разрыва}\;\mathrm{функции}\;\mu_A(z)\}.$$

Для нечеткого комплексного числа A с полунепрерывной сверху функцией принадлежности и ограниченными множествами уровня и последовательности аналитических функций $f_m: D \to \mathbb{C}$ $(n \ge 1)$ получаем согласно теореме 2 последовательность нечетких комплексных чисел $A_n = f_m(A)$ $(n \ge 1)$, функции принадлежности которых полунепрерывны сверху.

Теорема 3. Пусть A — нечеткое комплексное число, все множества уровня которого компактны; $f_n: D \to \mathbb{C}$ $(n \ge 1)$ — последовательность функций, аналитичных на $D \supset \operatorname{supp} A$; $f: D \to \mathbb{C}$ — функция, аналитичная на $D \supset \operatorname{supp} A$, и для любого компакта $K \subset \operatorname{supp} A$ выполнены условия:

 $\lim_{n\to\infty} f_n(z) = f(z)$, причем сходимость равномерна на K ;

для всех $w \in \mathbb{C}$ множество $f^{-1}(w) \cap K = \{z \in K : f(z) = w\}$ конечно.

Тогда $\lim_{n\to\infty} \mu_{f_n(A)}(w) = \mu_{f(A)}(w)$ для любого $w\in\mathbb{C}\setminus f(X_{f,\mathrm{supp}\,A}\cup\cup X_{A,\mathrm{supp}\,A})$.

Доказательство. Зафиксируем произвольные $w_0 \in \mathbb{C} \setminus f(X_{f, \text{supp }A} \cup X_{A, \text{supp }A})$ и $\varepsilon > 0$. Пусть $f^{-1}(w_0) \cap \text{supp }A \neq \emptyset$, тогда $f^{-1}(w_0) \cap [A]_{\alpha_0} \neq \emptyset$ для некоторого $0 < \alpha_0 \le 1$. По условию $X_0 = f^{-1}(w_0) \cap [A]_{\alpha_0}$ конечно; пусть $X_0 = \{z_1, z_2, \dots, z_k\}$ и $X_{0,\delta} = \bigcup_{j=1}^k \{z : |z-z_j| \le \delta\}$ для $\delta > 0$. Поскольку $\mu_A(z)$ и f'(z) непрерывны в каждой точке $z_j \in X_0$, $\mu_A(z_j) > 0$ и $|f'(z_j)| > 0$, можем выбрать такое $\delta_0 > 0$, что $\mu_A(z) > 0$, $|\mu_A(z_j) - \mu_A(z)| \le \varepsilon$ и |f'(z)| > 0 для любого $z \in X_{0,\delta_0}$.

Положим $X_j = \{z: \left|z_j - z\right| \le \delta_0\}$, $W_j = f(X_j)$ для $z_j \in X_0$. Тогда в соответствие с леммой 6 найдутся $W_0 \subset \bigcap_{j=1}^k W_j$ и $N_1 \ge 1$, что для всех $n \ge N_1$ определена $f_n^{-1,j}: W_0 \to X_j$, причем $w_0 \in W_0$ и $\lim_{n \to \infty} f_n^{-1,j}(w) = f^{-1,j}(w)$ для всех $w \in W_0$; подчеркнем, что $f^{-1,j}$ и $f_n^{-1,j}$ ($n \ge 1$) — обратные функции к сужениям f и f_n на X_j Поскольку $\widetilde{X}_0 = [A]_{\alpha_0} \setminus \bigcup_{j=1}^k \{z: |z-z_j| < \delta_0\}$ компактно, $|f(z)-w_0| > 0$ для $z \in \widetilde{X}_0$, а сходимость $\lim_{n \to \infty} f_n(z) = f(z)$ равномерна на \widetilde{X}_0 , выберем $N_2 \ge N_1$ так, что $|f_n(z)-w_0| \ge 2 \sum \frac{1}{2} \min \{|f(z)-w_0|| z \in \widetilde{X}_0\} > 0$ для всех $z \in \widetilde{X}_0$ и $n \ge N_2$. Итак, каждое уравнение $f_n(z) = w_0$ относительно z при $n \ge N_2$ имеет на $[A]_{\alpha_0}$ ровно k корней: $f_n^{-1,j}(w_0)$ ($1 \le j \le k$). Из равенства (1) получаем:

$$\begin{split} \mu_{f_n(A)}(w_0) &= \max_{1 \leq j \leq k} \mu_A(f_n^{-1,j}(w_0)) \ \text{при } n \geq N_2 \,, \\ \mu_{f(A)}(w_0) &= \max_{1 \leq j \leq k} \mu_A(f^{-1,j}(w_0)) \,. \end{split}$$

Выбрав $N \geq N_2$ так, что $\max_{1 \leq j \leq k} \left| f_n^{-1,j}(w_0) - f^{-1,j}(w_0) \right| \leq \delta_0$ при $n \geq N$, получаем: $\left| \mu_{f_n(A)}(w_0) - \mu_{f(A)}(w_0) \right| \leq \epsilon$ для $n \geq N$, т.е. $\lim_{n \to \infty} \mu_{f_n(A)}(w_0) = \mu_{f(A)}(w_0)$.

Наконец, при $f^{-1}(w_0) \cap \operatorname{supp} A = \varnothing$ имеем, очевидно, $\mu_{f(A)}(w_0) = 0$. Для произвольного $0 < \alpha_0 \le 1$ вследствие компактности $[A]_{\alpha_0}$ существует $\varepsilon = \min_{z \in [A]_{\alpha_0}} |f(z) - w_0| > 0$ и с учетом равномерной сходимости $\lim_{n \to \infty} f_n(z) = f(z)$ на $[A]_{\alpha_0}$ можем выбрать N так, что $|f_n(z) - w_0| \ge \frac{1}{2} \varepsilon > 0$ для всех $z \in [A]_{\alpha_0}$ и $n \ge N$. Таким образом, при $n \ge N$ $f_n^{-1}(w_0) \cap [A]_{\alpha_0} = \varnothing$ и из равенства (2) $\mu_{f_n(A)}(w_0) < \alpha_0$. Вследствие произвольности $0 < \alpha_0 \le 1$ получаем, что $\mu_{f_n(A)}(w_0) = 0$ при $n \ge N$, т.е. $\lim_{n \to \infty} \mu_{f_n(A)}(w_0) = \mu_{f(A)}(w_0) = 0$. Теорема полностью доказана. \square

Пример 11. Рассмотрим нечеткое комплексное число A с функцией принадлежности $\mu_A(z) = \begin{cases} 1 - \frac{|z|}{2\delta}, & |z| \leq \delta; \\ 0, & |z| > \delta, \end{cases}$ где $\delta > 0$ — фиксированная константа.

Рассмотрим последовательность функций $f_n(z)=z+\frac{i^n}{n}$ ($n\ge 1$). Очевидно, $\lim_{n\to\infty}f_n(z)=f(z)=z$ равномерно на $\sup A=\{z: |z|<\delta\}$. Непосредственно из равенства (1) для $n>\frac{1}{\delta}$ получаем

$$\mu_{f_n(A)}(z) = \begin{cases} 1 - \frac{\left|z + \frac{i^n}{n}\right|}{2\delta}, & \left|z + \frac{i^n}{n}\right| \le \delta; \\ 0, & \left|z + \frac{i^n}{n}\right| > \delta. \end{cases}$$

Поскольку $X_{f, \mathrm{supp}\,A} = \varnothing$ и $X_{A, \mathrm{supp}\,A} == \{z: |z| = \delta\}$, теорема 3 гарантирует сходимость $\lim_{n \to \infty} \mu_{f_n(A)}(z) = \mu_{f(A)}(z)$ для всех $z \in \mathbb{C}$, кроме f(z) = z при $|z| = \delta$. Заметим, что при $|z| = \delta$ предел $\lim_{n \to \infty} \mu_{f_n(A)}(z)$ не существует.

РЯД ТЕЙЛОРА С НЕЧЕТКИМ КОМПЛЕКСНЫМ АРГУМЕНТОМ: СХОДИМОСТЬ ЧАСТИЧНЫХ СУММ

Пусть $f:D\to\mathbb{C}$ — функция, аналитическая на непустом открытом множестве $D\subset\mathbb{C}$. Тогда для произвольного $z_0\in D$ получаем разложение

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{i!} (z - z_0)^k , \qquad (3)$$

причем ряд (3) сходится равномерно в любом круге $\overline{E} = \{z: \left|z-z_0\right| \le r\} \subset D$.

Лемма 7. Пусть $c\in\mathbb{C}$ и уравнение f(z)=c имеет бесконечно много корней на $\overline{E}=\{z:|z-z_0|\leq r\}\subset D$. Тогда f(z)=c для всех $z\in\overline{E}$.

Доказательство. Вследствие компактности \overline{E} множество корней уравнения f(z)=c имеет на \overline{E} предельную точку. Теперь, применяя теорему о единственности [14, 15], получаем: f(z)=c для всех $z\in \overline{E}$. \square

Пусть
$$S_n(z) = \sum_{k=0}^n \frac{f^{(k)}(z_0)}{k!} (z-z_0)^k$$
 $(n \ge 0)$ — частичные суммы ряда в равенстве (3). Ясно, что равенство (3) означает сходимость $\lim_{n \to \infty} S_n(z) = f(z)$.

Теорема 4. Пусть A — нечеткое комплексное число, все множества уровня которого компактны, а носитель линейно связный; функция $f:D \to \mathbb{C}$ аналитична на непустом открытом множестве $D \supset \sup A$. Тогда $\lim_{n \to \infty} \mu_{S_n(A)}(w) = \mu_{f(A)}(w)$ для любого $w \in \mathbb{C} \setminus f(X_{f, \operatorname{supp} A} \cup X_{A, \operatorname{supp} A})$.

Доказательство. Заметим, что $\lim_{n\to\infty}S_n(z)=f(z)$ и $\lim_{n\to\infty}S_n'(z)=f'(z)$, причем обе сходимости равномерны в любом круге $\overline{E}=\{z:|z-z_0|\le r\}\subset$

 \subset supp A. Пусть для некоторого $w_0 \in \mathbb{C} \setminus f(X_{f, \text{supp }A} \cup \dots \cup X_{A, \text{supp }A})$ и $\overline{E} \subset$ supp A множество $f^{-1}(w_0) \cap \overline{E}$ бесконечно. Тогда по лемме 7 имеем f(z) = c для всех $z \in \overline{E}$, а в силу единственности аналитического продолжения — для всех $z \in$ supp A, и утверждение теоремы очевидно. Если же множество $f^{-1}(w_0) \cap \overline{E}$ конечно для всех $w_0 \in \mathbb{C} \setminus f(X_{f, \text{supp }A} \cup X_{A, \text{supp }A})$ и $\overline{E} \subset$ supp A, выполнены все условия теоремы 3, откуда следует требуемое равенство $\lim_{n \to \infty} \mu_{S_n(A)}(w) = \mu_{f(A)}(w)$. Теорема полностью доказана. \square

Пример 12. Рассмотрим нечеткое комплексное число A с функцией принадлежности $\mu_A(z) = \begin{cases} 1-|z|, & |z| \leq 1; \\ 0, & |z| > 1, \end{cases}$ и функцию $f(z) = \frac{1}{1-z}$. Непосред-

ственно из равенства (1) найдем
$$\mu_{f(A)}(z) = \begin{cases} 1 - \dfrac{|z-1|}{|z|}, & \operatorname{Re} z \geq \dfrac{1}{2}; \\ 0, & -\infty \leq \operatorname{Re} z < \dfrac{1}{2}. \end{cases}$$

Область аналитичности f(z) включает $\sup A = \{z: |z| < 1\}$ и разложение в ряд Тейлора при $z_0 = 0$ имеет вид $f(z) = \sum_{i=0}^{\infty} z^i$; ряд сходится при |z| < 1. Частичные суммы $S_n(z) = \sum_{i=0}^n z^i$ при $z \neq 1$ представимы в виде $S_n(x) = \frac{1-z^{n+1}}{1-z}$. Так как $\mu_A(z)$ непрерывна на $\mathbb C$ и $f'(z) \neq 0$ для $z \in \sup A$ (и даже для $z \in \mathbb C$), теорема 4 гарантирует сходимость $\lim_{n \to \infty} \mu_{S_n(A)}(z) = \mu_{\frac{1}{1-A}}(z)$ для всех $z \in \mathbb C$. Следует отметить, что $(0;0,5] \subset \sup S_n(A)$ по крайней мере для всех n = 2k+1 ($k \geq 0$), хотя $\sup f(A) = \{z: \operatorname{Re} z > 0,5\}$. В таблице приведен ряд значений $\mu_{S_n}(0,5)$, демонстрирующий сходимость $\lim_{n \to \infty} \mu_{S_n(A)}(0,5) = 0$.

Значения $\mu_{S_n}(0,5)$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\mu_{S_n}(0,5)$	0,50	0,00	0,35	0,00	0,28	0,00	0,24	0,00	0,20	0,00	0,18	0,00	0,16	0,00	0,15	0,00	0,14	0,00	0,13	0,00

выводы

1. Для функциональной комплекснозначной последовательности $f_n(z)$, сходящейся к f(z), и нечеткого комплексного аргумента A представлены достаточные условия сходимости функций $\mu_{f_n(A)}(z)$ во всех точках, кроме образов точек разрыва $\mu_A(z)$ и нулей f'(z). Принципиальным

является условие конечности количества решений уравнения f(z) = w относительно z для всех $w \in \mathbb{C}$ в любом круге $\{z: |z-z_0| \subset \text{supp } A$.

- 2. Для аналитической функции f(z) представлены достаточные условия сходимости функций $\mu_{S_n(A)}(z)$, где $S_n(z)$ частичные суммы ряда Тейлора для f(z). При этом для любой нетривиальной аналитической f(z) уравнение f(z) = w относительно z для всех $w \in \mathbb{C}$ в любом круге $\{z: |z-z_0| \subset \text{supp } A \text{ всегда имеет лишь конечное количество решений.}$
- 3. Темой дальнейшего исследования предполагается возможность восстановления $\mu_{f(A)}(z)$ для всех $z \in \mathbb{C}$ с использованиям полунепрерывности $\mu_{f(A)}(z)$ сверху.

ЛИТЕРАТУРА

- 1. *Орловский С.А.* Проблемы принятия решений при нечеткой исходной информации / С.А. Орловский. М.: Наука, 1981. 208 с.
- 2. *Аверкин А.Н.* Нечеткие множества в моделях управления и искусственного интеллекта / А.Н. Аверкин, И.З. Батыршин, А.Ф. Блишун и др., под ред. Д.А. Поспелова. М.: Наука. Гл. ред. физ.-мат. лит., 1986. 312 с.
- 3. Passino Kevin M. Fuzzy Control / Kevin M. Passino, Stephen Yurkovich. Addison Wesley Longman, Menlo Park, CA, 1998. 522 p.
- 4. *Заде Л.А.* Понятие лингвистической переменной и его применение к принятию приближенных решений / Л.А.Заде. М.: Мир, 1976. 176 с.
- 5. *Mizumoto M.* Algebraic Properties of Fuzzy Numbers / M. Mizumoto, K. Tanaka // Proceedings of IEEE International Conference on Cybernetics and Society. 1976. P. 559–563.
- 6. *Delgado M.* Fuzzy Numbers, Definitions and Properties / M. Delgado, J.L. Verdegay, M.A. Vila // Mathware & Soft Computing 1. 1994. N 1 (1). P. 31–43.
- 7. *Dubois D.* Fuzzy Real Algebra: Some Results / D. Dubois, H. Prade // Fuzzy Sets and Systems. 1979. N 4 (2). P. 327–348.
- 8. Buckley J.J. Fuzzy Complex Numbers / J.J. Buckley // Fuzzy Sets and Systems. 1989. N 33. P. 333–345.
- 9. *Dong Qiu*. Notes on fuzzy complex analysis / Dong Qiu, LanShu, Zhi-WenMo // Fuzzy Sets and Systems. 2009. N 160. P. 1578–1589.
- 10. *Inaida J.* Taylor Series on the Fuzzy Number Space / J. Inaida // Special Issue on Biometrics And Its Applications. 2010. N 16 (1). P. 15–25.
- 11. 1. *Спекторский И.Я.* Последовательности функций и ряды Тейлора с нечетким аргументом / И.Я. Спекторский // Системні дослідження та інформаційні технології. 2014. № 2. С. 125–140.
- 12. *Натансон И.П.* Теория функций вещественной переменной / И.П. Натансон. 3 изд. М.: Наука, 1974. 480 с.
- 13. *Кадец В.М.* Курс функционального анализа / В.М. Кадец. Х.: Харьк. нац. ун-т им. В.Н. Каразина, 2006. 607 с.
- 14. *Шабат Б.В.* Введение в комплексный анализ / Б.В.Шабат. М.: Наука, 1985. Ч. 1. 336 с.
- 15. *Маркушевич А.И.* Краткий курс теории аналитических функций / А.И. Маркушевич. М.: Наука, 1978. 416 с.

Поступила 03.02.2016