Fuzzy-regression models under conditions of the presence of non-numeric data in the statistical sample

Authors

  • Yuriy A. Zack

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2017.1.07

Keywords:

Fuzzy-regression analysis, non-numeric statistics, linguistic variable parameters, numerical scales, Fuzzy-sets, approximation criteria, method of least squares

Abstract

Algorithms are presented for solving the problems of the fuzzy regression analysis under the conditions when the input and output variables are represented by Fuzzy-sets defined up to unknown parameters and the regression coefficients are real numbers. We proposed several new approximations of criteria based on the comparison of the convolution of the cross sections lengths and the center of gravity coordinates of membership functions of the Fuzzy-sets, which can be used for the fuzzy set variables of the problem of a general form. The algorithms convert a variable represented by linguistic terms of variable parameters or numerical scales into fuzzy sets and use these data in the problems of the Fuzzy-regression analysis. The results will allow to solve many practical problems in economics, logistics, sociology, and marketing.

Author Biography

Yuriy A. Zack

Yuriy Zack,

Dokt.-Ing., the scientific expert and consultant, Aachen, Germany.

References

Rasin Dzh. Neparametricheskaja ekonometrika: vvodnyj kurs / Rasin Dzh. // Kvantyl'. — 2008. — No. 4. — S. 7–56.

Zajchenko Ju.P. Nechetkij metod grupovogo ucheta argumentov pri neopredelennyh vhodnyh dannyh / Ju.P. Zajchenko // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2007. — No. 3. — S. 100–112.

Zajchenko Ju.P. Nechetkie modeli i metody v intellektual'nyh sistemah / Ju.P. Zajchenko. — K.: Izd. Dom " Slovo", 2008. — 354 s.

Zak Ju.A. Matematicheskie modeli prognozirovanija zatrat vremeni i stoimosti perevozki gruzov / Ju.A. Zak // Logistika segodnja, Grebennikov. — 2015. — No. 1. — S. 162–172.

Zgurovskij M. Modeli i metody prinjatija reshenij v nechetkih uslovijah / M. Zgurovskij, Ju. Zajchenko. — K.: Nauk. dumka, 2013. — 275 s.

Zak Ju.A. Prinjatie reshenij v uslovijah razmytyh i nechetkih dannyh / Ju.A. Zak // URSS, M., 2013. — 352 c.

Jarushkina N.G. Osnovy teorii nechetkih i gibridnyh sistem / N.G. Jarushkina. — M.: Finansy i statistika, 2004. — 320 s.

Shtovba S.D. Nechetkaja identififikatsija na osnove regressionnyh modelej parametricheskoj funktsii prinadlezhnosti / S.D. Shtovba // Problemy upravlenija i informatiki. — 2006. — No. 6. — S.1–8.

Gritsjuk V.I. Nechetkij robastnyj regressionnyj analiz dlja nechetkih vhodnyh i vyhodnyh dannyh / V.I. Gritsjuk // Tehnologicheskij audit i rezervy proizvodstva. — 2015. — No. 6. — S. 4–8.

Tanaka H. Linear regression analysis with fuzzy model / H. Tanaka, S. Uejima, K. Asai // IEEE Trans. Systems Man Cybernet. — 1982. — 12, N 6. — P. 903–907.

Tanaka H. Possibilistic linear system and their application to the linear regression model / H. Tanaka, J. Warada // Fuzzy Sets and Systems. — 1988. —N 27. — P. 275–289.

Diamond P. Fuzzy least squares / P. Diamond // Information Sciences. — 1988. — N 46. — P. 141–157.

Celmins A. Least Squares model fitting to fuzzy vector data / A. Celmins // Fuzzy Sets and System. — 1987. — Vol. 22. — P. 260–269.

Diamond P. Least squares fitting of several Fuzzy variables / P. Diamond // Proceedings of Second IFSA Congress. — Tokyo, 1987. — P. 20–25.

Aliev R. Genetic algorithms-based fuzzy regression analysis / R. Aliev, B. Fazlollahi, R. Vahidov // Soft Computing. — 2002. — N 6. — P. 470–475.

Papadopoulos B. Similarities and distances in fuzzy regression modeling / B. Papadopoulos, M. Sirpi // Soft Computing. — 2004. — No. 8. — P. 556–561.

D-Urso P. Robust fuzzy regression analysis / P. D-Urso, R. Massan, A. Santoro // Informations Sciences. — 2011. — Vol. 181. — P. 1154–1174.

Rousseeuw P. Applying robust regression to insurance / P. Rousseeuw // Insurance: Mathematics and Economics. — 1984. — Vol. 3, N 1. — P. 67–72.

Yang M-S. Fuzzy Least Squares algorithms for Interactive fuzzy linear regression models / M-S. Yang, H.H. Liu // Fuzzy Sets and Systems. — 2003. — Vol. 135, N 2. — P. 305–316.

Zaychenko Yu. The Fuzzy group method of data handling and Its Application for Economical Processes forecasting / Yu. Zaychenko // Scientific Inquiry. — 2006. — Vol. 7, N 1. — P. 83–98.

Published

2017-03-21

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research