On existence of solution of the Cauchy problem for nonlinear diffusion stochastic partial differential-difference equations of neutral type with random external perturbations
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2017.2.10Keywords:
Cauchy problem, stochastic partial differential equation, existence of the solution, random perturbationsAbstract
The question related to the existence of the Cauchy problem solution in the class of nonlinear diffusion stochastic partial differential-difference equations of a neutral type with random external disturbances which are independent from the Wiener process is considered. Sufficient conditions are obtained for the diffusion coefficients of nonlinear stochastic differential-difference equations of a neutral type (NDSDRRNT) that guarantee the existence of the solution with the probability of 1. The method of the proof is based on the results of O.M. Stanzhitsky and A.O. Tsukanova on the existence and uniqueness of the Cauchy problem solution for the stochastic differential reaction-diffusion equation of a neutral type. In this paper, we prove the existence of a "mild solution" of NDSDRRNT. In some cases, such equations are mathematical models of real processes, the consideration of which is planned in the future work.References
Andreeva E.A. Upravlenie sistemami s posledejstviem / E.A. Andreeva, V.B. Kolmanovskij, L.E. Shajhet. – M.: Nauka, 1992. – 333 s.
Billingsli P. Shodimost' verojatnostnyh mer / P. Billingsli. – M.: Nauka, 1977. – 352 s.
Gihman I.I. Stohasticheskie differentsial'nye uravnenija i ih primenenie / Y.Y. Hykhman, A.V. Skorokhod. – K.: Nauk. dumka, 1980. – 612 s.
Gihman I.I. Stohasticheskie differentsial'nye uravnenija s chastnymi proizvodnymi: sb. nauch. tr. / I.I. Gihman, A.V.Skorohod. – K.: In-t matematiki AN USSR. – 1981. – S. 25–59.
Kolmogorov A.N. Elementy teorii funktsij i funktsional'nogo analiza / A.N. Kolmogorov, S.V. Fomin. – M.: Nauka, 1976. – 541 s.
Perun G.M. O stabilizatsii reshenij zadachi Dirihle s razryvnymi traektorijami i operatorom Besselja / G.M. Perun, V.K. Jasinskij // Kibernetika i vychislitel'naja matematika. – 1991. – № 83. – C.19–25.
Perun G.M. Issledovanie zadachi Koshi dlja stohasticheskih uravnenij v chastnyh proizvodnyh / G.M. Perun, V.K. Jasinskij // Ukr. mat. zhurn. – 1993. – T. 45, № 9. – C. 1773–1781.
Sverdan M.L. Stabilizatsija reshenij stohasticheskih linejnyh uravnenij v chastnyh proizvodnyh pri nalichii puassonovskih vozmuschenij / M.L. Sverdan, L.I. Jasinskaja, V.K. Jasinskij // Kibernetika i vychislitel'naja tehnika. – 1988. – №81. – S. 7–12.
Stanzhitskij A.N. Suschestvovanie i edinstvennost' reshenija zadachi Koshi dlja stohasticheskogo differentsial'nogo uravnenija reaktsii-diffuzii nejtral'nogo tipa / A.N. Stanzhitskij, A.O. Tsukanova // Nelinijni kolyvannja. – 2016. – T. 19, № 3. – S. 408–430.
Tsukanova A.O. On existence and uniqueness of mild solution to the Cauchy problem for one neutral stochastic differential equation of reaction-diffusion type in hilbert space / A.O. Tsukanova // Bukovyns'kyj matematychnyj zhurnal. – 2016. – T. 4, № 3–4. – C. 179–189.
Tessitore G. Invariant Measures for Stochastic Heat Equations / G. Tessitore, J. Zabczyk // Probability and Mathematical Statistics. – 1998. – 18. – P. 271–287.
Zabczyk J. Ergodicity for Infinite Dimensional Systems / J. Zabczyk, G. Da Prato // Dynamic Systems and Applications. – Cambridge University Press. – 1996. – 449 p.