Measure construction on surfaces embedded into Riemann manifolds with uniform structure

Authors

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2017.4.11

Keywords:

Riemann manifold, volume measure, vector field, surface measure

Abstract

A finite-dimensional Riemann manifold with a uniform structure and the corresponding Riemann measure of the volume were considered. For an embedded surface an induced Riemann volume measure can be constructed with the tensor induced by an embedding. An alternative approach to the construction of an associated surface measure is proposed. The construction assumes an assignment of the differential form associated with the surface and a set of pairwise commuting vector fields on the manifold, strictly transversal to the surface. Under the action of the flow of the vector fields with small values of t, the subset on the surface transforms into a neighborhood on the manifold, and by passing to the limit the value of the surface measure can be obtained. It is shown that the construction of a surface measure using the mentioned alternative approach yields an exactly induced Riemann measure of the volume.

Author Biography

Kateryna V. Moravetska, The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Moravetska Kateryna Vitaliivna,

a Ph.D. student at the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

References

Uglanov A.V. Poverhnostnye integraly v prostranstvah Freshe / A.V.Uglanov // Matematicheskij sbornik. — 1998. — T. 189, № 11. — S. 139–157.

Uglanov A.V. Integration on infinite-dimensional surfaces and its applications / A.V. Uglanov. — Dordrecht: Kluwer Acad. Publ., 2000. — 262 p.

Pugachev O.V. Emkosti i poverhnostnye mery v lokal'no vypuklyh prostranstvah / O.V. Pugachev // Teorija verojatnostej i ee primenenija. — 2008. — 53, № 1. — S. 178–188.

Bogdanskij Ju.V. Banahovy mnogoobrazija s ogranichennoj strukturoj i formula Gaussa–Ostrogradskogo / Ju.V. Bogdanskij // Ukr. mat. zhurn. — 2012. — 64, № 10. — S. 1299–1313.

Bogdanskij Ju.V. Laplasian po mere na gil'bertovom prostranstve i zadacha Dirihle dlja uravnenija Puassona v -versii / Ju.V. Bogdanskij // Ukr. mat. zhurn. — 2011. — 63, № 9. — S. 1169–1178.

Bogdanskij Ju.V. Zadacha Dirihle s laplasianom po mere na gil'bertovom prostranstve / Ju.V. Bogdanskij, Ja.Ju. Sanzharevskij // Ukr. mat. zhurn. — 2014. — 66, № 6. — S. 733–739.

Bogdanskij Ju.V. Granichnyj operator sleda v oblasti gil'bertova prostranstva i harakteristicheskoe svojstvo ego jadra / Ju.V. Bogdanskij // Ukr. mat. zhurn. — 2015. — 67, № 11. — S. 1450–1460.

Bogdanskij Ju.V. Poverhnostnye mery na banahovyh mnogoobrazijah s ravnomernoj strukturoj / Ju.V. Bogdanskij, E.V. Moravetskaja // Ukr. mat. zhurn. — 2017. — 69, № 8. — S. 1030–1048.

Bogdanskij Ju.V. Tranzitivnost' poverhnostnyh mer na banahovyh mnogoobrazijah s ravnomernoj strukturoj / Ju.V. Bogdanskij, E.V. Moravetskaja // Ukr. mat. zhurn. — 2017. — 69, №10. — S. 1299–1309.

Moravets'ka K.V. Al'ternatyvna konstruktsija poverkhnevykh mir u skinchennovymirnykh prostorakh ta yiyi uzhodzhenist' iz klasychnym pidkhodom / K.V. Moravets'ka // Nauk. visti NTUU "KPI". — 2017. — № 4. — S. 66–72.

Published

2017-12-15

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research