Boundary value problem, associated with diffeomorphism between Riemannian manifolds

Authors

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2018.1.11

Keywords:

Hilbert space, Riemannian manifold, diffeomorphism, Borel measure, derivation of measures, Laplacian, Dirichlet problem

Abstract

Laplace operator construction is considered in L2-version with respect to the measure in the context of diffeomorphism between (infinite-dimensional) Riemannian manifolds. The connection between such operators as the gradient closure, boundary restriction operator and divergence with respect to the measure on diffeomorphic manifolds is derived. It is proved that in the case when the gradient closure, boundary restriction operator and divergence with respect to measure are correctly defined on a Riemannian manifold, the respective operators are correctly defined on a diffeomorphic Riemannian manifold too. As a corollary of the derived connection, the class of solvable boundary value problems (problems that have one and only one solution) on Riemannian manifolds (and on Hilbert’s space as a particular case of Riemannian manifold) is widened by reducing the problem of a special kind into an associated with it Dirichlet problem.

Author Biography

Oleksii Yu. Potapenko, P.C. "ISTA group", Kyiv

Oleksii Iiuriiovich Potapenko,

a system analyst at P.C. "ISTA group", Kyiv, Ukraine.

Research interests: infinite-dimensional spaces and manifolds, boundary value problems on infinite-dimensional spaces and manifolds.

References

Gross L. Potential theory on Hilbert space / L. Gross // J. Funct. Anal. — 1967. — 1. — P. 123–181.

Daletskij Ju.L. Beskonechnomernye ellipticheskie operatory i svjazannye s nimi parabolicheskie uravnenija / Ju.L. Daletskij // Uspehi mat. nauk. — 1967. — 22, № 4. — C. 3–54.

Levi P. Konkretnye problemy funktsional'nogo analiza / P. Levi. — M.: Nauka, 1967. — 512 c.

Nemirovskij A.S. Ob aksiomaticheskom opisanii operatora Laplasa dlja funktsij na gil'bertovom prostranstve / A.S. Nemirovskij, G.E. Shilov // Funktsional'nyj analiz i ego prilozhenie. — 1969. — 3, № 3. — C. 79–85.

Bogdanskij Ju.V. Zadacha Koshi dlja parabolicheskih uravnenij s suschestvenno beskonechnomernymi ellipticheskimi operatorami / Ju.V. Bogdanskij // Ukr. mat. zhurn. — 1977. — 29, № 6. — C. 781–784.

Accardi L. On Laplacians and traces / L. Accardi, O.G. Smolianov // Conf. Semin. Univ. Bari. — 1993. — 250. — P. 1–25.

Accardi L. A quantum approach to Laplace operators / L. Accardi, A. Barhoumi, H. Ouerdiane // Infinite Dimens. Anal. Quant. Probab. Relat. Top. — 2006. — 9. — P. 215–248.

Accardi L. Exotic Laplacians and associated stohastic processes / L. Accardi, U.C. Ji, K. Saito // Infinite Dimens. Anal. Quant. Probab. Relat. Top. — 2009. — 12. — P. 1–19.

Bogdanskij Ju.V. Laplasian po mere na gil'bertovom prostranstve i zadacha Dirihle dlja uravnenija Puassona v -versii / Ju.V. Bogdanskij // Ukr. mat. zhurn. — 2011. — 63, № 9. — C. 1169–1178.

Bogdanskij Ju.V. Zadacha Dirihle s laplasianom po mere na gil'bertovom prostranstve / Ju.V. Bogdanskij, Ja.Ju. Sanzharevskij // Ukr. mat. zhurn. — 2014. — 66, № 6. — C. 733–739.

Bogdanskij Ju.V. Granichnyj operator sleda v oblasti gil'bertova prostranstva i harakteristicheskoe svojstvo ego jadra / Ju.V. Bogdanskij // Ukr. mat. zhurn. — 2015. — 67, № 11. — C. 1450–1460.

Bogdanskij Ju.V. Laplasian po mere i ergodicheskaja teorema / Ju.V. Bogdanskij, Ja.Ju. Sanzharevskij // Ukr. mat. zhurn. — 2015. — 67, № 9. — C. 1172–1180.

Bogdanskij Ju.V. Laplasian po mere na rimanovom mnogoobrazii i zadacha Dirihle I / Ju.V. Bogdanskij, A.Ju. Potapenko // Ukr. mat. zhurn. — 2016. — 68, № 7. — C. 897–907.

Bogdanskij Ju.V. Laplasian po mere na rimanovom mnogoobrazii i zadacha Dirihle II / Ju.V. Bogdanskij, A.Ju. Potapenko // Ukr. mat. zhurn. — 2016. — 68, № 11. — C. 1443–1449.

Obata M. Certain conditions for a Riemannian manifold to be isometric with a sphere / M. Obata // J. of the Math. Soc. of Jap. — 1962. — 14, N. 3. — P. 333–340.

Omori H. Isometric immersions of Riemannian manifolds / H. Omori // J. of the Math. Soc. of Jap. — 1967. — 19, N 2. — P. 205–214.

Daletskij Ju.L. Stohasticheskie uravnenija i differentsial'naja geometrija / Ju. L. Dalektsyj, Ja. Y. Belopol'skaja. — K.: Vyshcha shk., 1989. — 296 c.

Potapenko O.Ju. Neskinchennovymirni rimanovi mnohovody z rivnomirnoju strukturoju / O.Ju. Potapenko // Naukovi visti NTUU "KPI". — 2016. — T. 108, № 4. — S. 73—79.

Published

2018-03-20

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research