Problems of fuzzy-linear programming with two-sided constraints and parameters of objective functions and constraints in the form of fuzzy sets

Authors

  • Yuriy A. Zack

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2018.2.11

Keywords:

fuzzy-linear programming, fuzzy-intervals with LR-representation of membership functions, conditions for dominance of fuzzy sets, two-way interval constraints, deterministic equivalent

Abstract

The deterministic equivalents of the tasks of fuzzy linear programming with two-sided constraints on the deterministic values of variables that can take both positive and negative values are proposed, and the coefficients of the goal function and the linear constraint functions, as well as the left and right boundary values on their values, are fuzzy sets, represented by fuzzy-intervals with membership functions with LR-representation of the most general kind. Based on the rules of ranking and estimating the dominance of fuzzy sets considered in the work, conditions for unconditional (strict) and conditional (non-strict) fulfillment of restrictions are established. The different kinds of deterministic equivalents of the problem in which the execution of fuzzy constraints with different degrees of severity is required, involve solving not one but several sets of linear programming problems. The best possible solution is chosen.

Author Biography

Yuriy A. Zack

Yuriy Zack,

Dokt.-Ing., the scientific expert and consultant, Aachen, Germany.

References

Shatalova A.Ju. Nechetkoe linejnoe programmirovanie v zadachah optimal'nogo finansirovanija investitsionnyh proektov, maksimizirujuschej poluchaemyj predprijatiem dohod / A.Ju. Shatalova, K.A. Lebedev // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. — 2015. — № 9–1. — S. 35–38;

Shvedov A.S. Nechetkoe matematicheskoe programmirovanie: kratkij obzor / A.S. Shvedov // Problemy upravlenija. — M., № 3, 2017. — S. 2–10.

Zimmermann H-J. Fuzzy programming and linear programming with several objective functions / H-J. Zimmermann // Fuzzy Sets and Systems. — 1978. — Vol. 1. — P. 45–57.

Rommelfanger H.J. Fuzzy-Optimierungsmodelle in praktischen Anwendungen // Multi-Criteria und Fuzzy-Systeme in Theorie und Praxis. — Deutscher Univer-sitäts-Verlag, Wiesbaden 2003. — P. 95–113.

Rommelfanger H.J. Entscheiden bei Unschärfe. Fuzzy Decision Support System / H.J. Rommelfanger. — Springer Verlag, Berlin-Heidelberg, Second edition 1994.

Zajchenko Ju.P. Nechetkie modeli i metody v intellektual'nyh sistemah / Ju.P. Zajchenko. — K.: Slovo, 2008. — 344 s.

Sakawa M. Fuzzy Sets and multiobjektive optimization / M. Sakawa. — N-Y: Plenum Press, 1993. — 380 p.

Maleki H.R. Linear programming with fuzzy variables / H.R. Maleki, M. Tata, M. Mashinchi // Fuzzy Sets and Systems. — 2000. — Vol. 109. — P. 21–33.

Mahdavi-Amiri N. Duality in fuzzy number linear programming by use of a certain linear ranking function / N. Mahdavi-Amiri, S.H. Nasseri // Applied Mathematics and Computation. — 2006. — Vol. 180. — P. 206–216.

Delgado M. A general model for fuzzy linear programming / M. Delgado, J.L. Verdegay, M.A. Vila // Fuzzy sets and System. — Vol. 29. — 1989. — P. 21–29.

Bellman R.E. Decision-Making in Fuzzy Environment / R.E. Bellman, L.A. Zadeh // Management Science. — 1970. —Vol. 17. — N 4. — P.141–160.

Bellman R. Prinjatie reshenij v rasplyvchatyh uslovijah / R. Bellman, L. Zade // Voprosy analiza i protsedury prinjatija reshenij. — M.: Mir, 1976. — S. 172–215.

Orlovskij S.A. Problemy prinjatija reshenij pri nechetkoj ishodnoj informatsii / S.A. Orlovskij // M.: Radio i svjaz', 1981. — 286 s.

Zgurovskij M.Z. Modeli prinjatija reshenij v nechetkih uslovijah / M.Z. Zgurovskij, Ju.P. Zajchenko. — K.: Nauk. dumka. — 211 s.

Zak Ju.A. Prinjatie reshenij v uslovijah razmytyh i nechetkih dannyh / Ju.A. Zak. — M.: URSS, 2013. — 352 c.

Zak Ju.A. Chetkij ekvivalent zadachi Fuzzy-linejnogo pogrammirovanija / Ju.A. Zak // Problemy upravlenija i informatiki. — K., 2011. — № 1. — S. 87–101.

Zak Ju.A. Mnogokriterial'nye zadachi matematicheskogo programmirovanija s razmytymi ogranichenijami. Matematicheskie modeli shem kompromissa. Vybor reshenij iz konechnogo mnozhestva al'ternativ // Kibernetika i sistemnyj analiz. — K., 2010. — № 5. — S. 80–89.

Published

2018-06-20

Issue

Section

Methods of system analysis and control in conditions of risk and uncertainty