# Mathematical modeling of the electrostressed state in the orthotropic piezoelectric space with an arbitrary orientated circle crack under uniaxial tension

## DOI:

https://doi.org/10.20535/SRIT.2308-8893.2018.3.06## Keywords:

mathematical modeling, coupled equations systems of electroelasticity, orthotropic piezoelectric materials, circular crack, arbitrary orientation, uniaxial tension, stress state## Abstract

A mathematical model for the analysis of the stress state in an orthotropic electroelastic material with an arbitrary orientated circular crack is developed. The model is based on the consideration of the coupled system of equations of static electroelasticity. The problem on electric and stress states in orthotropic piezoelectric space with an arbitrary orientated circular crack under homogeneous loads was considered. The solution of the problem was obtained by means of the triple Fourier transform and Fourier image of Green's function for an infinite anisotropic piezoelectric medium. This approach was tested in the case of the location crack in the isotropy plane of transversely isotropic piezoelectric material for which there was an exact solution of the problem. The comparison of the calculated results confirmed the efficiency of the used approach. Numerical experiments were carried out and distributions of stress intensity factors along the front of the arbitrary orientated circular crack in orthotropic piezoelectric materials under the uniaxial tension were studied.## References

Grinchenko V.T. Elektrouprugost' / V.T. Grinchenko, A.F. Ulitko, N.A. Shul'ga // Mehanika svjazannyh polej v elementah konstruktsij: v 6 t.; T. 1. — K.: Nauk. dumka, 1989. — 279 s.

Kiriljuk V.S. Matematicheskoe modelirovanie i analiz naprjazhennogo sostojanija v ortotropnoj p'ezoelektricheskoj srede s krugovoj treschinoj / V.S. Kiriljuk, O.I. Levchuk, E.V. Gavrilenko // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2017. — № 3.— S.117–126.

Shul'ha M.O. Rezonansni elektromekhanichni kolyvannja p’yezoelektrychnykh plastyn / M.O. Shul'ga, V.L. Karlash. — K.: Nauk. dumka, 2008. — 270 s.

Chen W.Q. 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium / W.Q. Chen, C.W. Lim // Int. J. Fract. — 2005. — 131, N 3. — P. 231–246.

Chen W.Q. Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer / W.Q. Chen, J.B. Cai, G.R. Ye, Y.F. Wang // International Journal of Solids and Structures. — 2004. — 41, N 18–19. — P. 5247–5263.

Chiang C.R. The nature of stress and electric-displacement concentrations around a strongly oblate cavity in a transversely isotropic piezoelectric material / C.R. Chiang, G.J. Weng // Int. J. Fract. — 2005. — 134, N 3–4. — P. 319–337.

Dai L. Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids / L. Dai, W. Guo, X. Wang // Int. J. Solids and Struct. — 2006. — 43, N 6. — P. 1818–1831.

Dunn M.L. Electroelastic field concentrations in and around inhomogeneities in piezoelectric solids / M.L. Dunn, M. Taya // J. Appl. Mech. — 1994. — 61, N 4. — P. 474–475.

Kaloerov S.A. Problem of Electromagnetoviscoelasticity for Multiply Connected Plates / S.A. Kaloerov, A.A. Samodurov // International Applied Mechanics. — 2015. — 51, N 6. — P.623–639.

Kaloerov S.A. Determining the intensity factors for stresses, electric-flux density, and electric-field strength in multiply connected electroelastic anisotropic media / S.A. Kaloerov // Int. Appl. Mech. — 2007. — 43, N 6. — P. 631–637.

Karnaukhov V.G. Forced Resonant Vibrations and Self-Heating of Solids of Revolution Made of a Viscoelastic Piezoelectric Material / V.G. Karnaukhov, V.I. Kozlov, A.V. Zavgorodnii, I.N. Umrykhin // International Applied Mechanics. — 2015. — 51, N 6. — P. 614–622.

Kirilyuk V.S. Elastic state of a transversely isotropic piezoelectric body with an arbitrarily oriented elliptic crack / V.S. Kirilyuk // Int. Appl. Mech. — 2008. — 44, N 2. — P. 150–157.

Kirilyuk V.S. On the stress state of a piezoceramic body with a flat crack under symmetric loads / V.S. Kirilyuk // Int. Appl. Mech. — 2005. — 41, N 11. — P. 1263–1271.

Kirilyuk V.S. Stress state of a piezoelectric ceramic body with a plane crack under antisymmetric loads / V.S. Kirilyuk // Int. Appl. Mech. — 2006. — 42, N 2. — P. 152–161.

Kirilyuk V.S. Stress state of an elastic orthotropic medium with elliptical crack under tension and shear / V.S. Kirilyuk // International Applied Mechanics. — 2005. — 41, N 4. — P.358–366.

Kirilyuk V.S. Thermostressed state of a piezoelectric body with a plane crack under symmetric thermal load / V.S. Kirilyuk // International Applied Mechanics. — 2008. — 44, N 3. — P. 320–330.

Kirilyuk V.S. Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack / V.S. Kirilyuk, O.I. Levchuk // International Applied Mechanics. — 2017. — 53, N 3. — P.305–312.

Lekhnitskii S.G. Theory of Elasticity of an Anisotropic Body (in English) / S.G. Lekhnitskii. — Moscow: Mir Publ. — 1981. — 430 p.

Lin S. Electroelastic analysis of a penny-shaped crack in a piezoelectric ceramic under mode I loading / S. Lin, F. Narita, Y. Shindo // Mech. Res. Com. — 2003. — 30, N 4. — P. 371–386.

Podil’chuk Yu.N. Representation of the general solution of statics equations of the electroelasticity of a transversally isotropic piezoceramic body in terms of harmonic functions / Yu.N. Podil’chuk // International Applied Mechanics. — 1998. — 34, N 7. — P. 623–628.

Podil’chuk Yu.N. Electroelastic equilibrium of transversally isotropic, piezoceramic media containing cavities, inclusions, and cracks / Yu. N. Podil’chuk // International Applied Mechanics. — 1998. — 34, N 10. — P.1023–1034.

Shang F. Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part 1: Analitical development / F. Shang, M. Kuna, T. Kitamura // Theor. Appl. Fract. Mech. — 2003. — 40, N 3. — P. 237–246.

Sladek J. Crack analyses in porous piezoelectric brittle materials by the SBFEM // Engineering Fracture Mechanics / J. Sladek, V. Sladek, S. Krahulec, C. Song. — 2016. — V. 160. — P. 78–94.

Wang Y.J. The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material / Y.J. Wang, C.F. Gao, H.P. Song // Mechanics Research Communications. — 2015. — V. 65. — P. 17–23.

Wang Z.K. The general solution of three-dimension problems in piezoelectric media / Z.K. Wang, B.L. Zheng // Int. J. Solids Structures. — 1995. — 32, N 1. — P. 105–115.

Willis J.R. The stress field around an elliptical crack in an anisotropic elastic medium / J.R. Willis // Int. J. Eng. Sci. — 1968. — 6, N 5. — P. 253–263.

Zhang T.Y. Fracture behaviors of piezoelectric materials / T.Y. Zhang, C.F. Gao // Theor. Appl. Fract. Mech. — 2004. — 41, N 1–3. — P. 339–379.

Zhao M.H. Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method / M.H. Zhao, Y. Li, Y. Yan, C.Y. Fan // Engineering Analysis with Boundary Elements. — 2016. — V. 67. — P. 115–125.

Zhao M.H. Extended displacement discontinuity method for analysis of cracks in 2D poezoelectricsemiconductors / M.H. Zhao, Y.B. Pan, C.Y. Fan, G.T. Xu // International Journal of Solids and Structures. — 2016. — V. 94–95. — P. 50–59.

Zhou Y. Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections / Y. Zhou, W.Q. Chen, C.F. Lu // Composite Structures. — 2010. — 92, N 4. — P. 1009–1018.