Approximate minimax estimation of functional from the solution of parabolic boundary-value problem with rapidly oscillating coefficients under nonlinear observations
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2019.2.08Keywords:
minimax estimation, parabolic boundary-value problem, rapidly oscillating coefficients, averaged problem, uncertainty, approximate estimateAbstract
The article deals with the problem of the minimax estimation of a functional from the solution of a parabolic boundary-value problem with rapidly oscillating coefficients. We measure not the value that describes the investigated process, but some value from the solution with an operator, which determines the way of measurement. The problem is complicated not only due to the rapidly fluctuating coefficients and unknown functions that are included in the equation and initial conditions, but also due to the observation being nonlinear (it has a superposition type operator). At a value of the small parameter, the solution existence for the original problem is established using the traditional minimax approach. The transition to a problem with averaged parameters allows us to get rid of nonlinearity in the observation. The main result of the work is to prove that the minimax estimate of the problem with averaged coefficients is an approximate minimax estimate of the original problem.References
Nakonechnyj A.G. Minimaksnoe otsenivanie funktsionalov ot reshenij variatsionnyh uravnenij v gil'bertovyh prostranstvah / A.G. Nakonechnyj // K.: KGU, 1985. — 83 s.
Krasovskij N.N. Teorija upravlenija dvizheniem / N.N. Krasovskij. — M.: Nauka, 1968. — 476 s.
Lions Zh.-L. Optimal'noe upravlenie sistemami, opisyvaemymi uravnenijami s chastnymi proizvodnymi / Zh.-L. Lions. — M.: Mir, 1972. — 414 s.
Lions Zh.-L. Nekotorye metody reshenija nelinejnyh kraevyh zadach // Zh.-L. Lions. — M.: Mir, 1972. — 588 s.
Nakonechnyi A.G. Minimax prediction estimation of solutions of initial-boundary-value problems for parabolic equations with discontinuous coefficients based on imperfect data / A.G. Nakonechnyi, Yu.K. Podlipenko, Yu.A. Zaitsev // Cybernetics and Systems Analysis. — 2000. November 2000, Vol. 36, Issue 6. P. 845–854.
Podlipenko Y. Mixed variational approach to finding guaranteed estimates for solutions and right-hand sides of the second-order linear elliptic equations under incomplete data / Y. Podlipenko, Y. Shestopalov // Minimax Theory and its Applications. — 2016.
Kapustyan E.A. The minimax problems of pointwise observation for a parabolic boundary value problem / E.A. Kapustyan, A.G. Nakonechnyj // Journal of Automation and Information Sciences. — 2002. — Vol. 34(5–8). — P. 52–63.
Kapustyan E.A. Optimal bounded control synthesis for a parabolic boundary-value problem with fast oscillatory coefficients / E.A. Kapustyan, A.G. Nakonechnyj // Journal of Automation and Information Sciences. — 1999. - Vol. 31, Issue 12, P. 33-44.
Kapustyan O.V. Approximate bounded synthesis for one weakly nonlinear boundary-value problem / O.V. Kapustyan, O.A. Kapustyan, A.V. Sukretna // Nonlinear Oscillations. — 2009. — Vol. 12, N 3. — P. 297–304.
Kapustian O.A. Approximate homogenized synthesis for distributed optimal control problem with superposition type cost functional / O.A. Kapustian, V.V. Sobchuk // Statistics, Optimization and Information Computing. — 2018. — Vol. 6, N 2. P. 233–239.
Zhikov V.V. Usrednenie differentsial'nyh operatorov / V.V. Zhikov, S.M. Kozlov, O.A. Olejnik. — M.: FizMatLit, 1993. — 464 s.
Denkiwski Z. Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations / Z. Denkiwski, S. Mortola // Journal of Optimization Theory and Applications. — 1993. —Vol. 78. — P. 365–391.