Game strategies for decision making in hierarchical systems. I. Mathematical model of stochastic game
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2019.3.06Keywords:
decision making, hierarchical system, conditions of uncertainty, stochastic game, mathematical modelAbstract
A mathematical model of a stochastic game for decision making in hierarchical systems under uncertainty conditions is developed. The essence of the game consists in aligning the players' pure strategies to achieve a consensus or a majoritarian collective solution. The parameterization of the game model for the separation of the autocratic, anarchic, and democratic hierarchical structures of decision-making systems is carried out. A Markov recurrent method for solving a stochastic game based on a stochastic approximation of the complementary slackness condition has been developed.References
Sharapov O.D. Ekonomichna kibernetyka: navch. posib. / O.D. Sharapov, V.D. Derbentsev, D.Ye. Sem'onov. — K.: KNEU, 2004. — 231 s.
Teorija i praktyka pryjnjattja upravlins'kykh rishen' / A.S. Krupnyk, K.O. Lyn'ov, Ye.M. Nuzhnyj, O.M. Rudyk. — K.: Vydavnychyj dim "Prostir", 2007. — 119 s.
Dubovoj V.M. Modeli pryjnjattja rishen' v upravlinni rozpodilenymy dynamichnymy systemamy: monohr. / V.M. Dubovoj, O.O. Kovaljuk. — Vinnytsja: UNIVERSUM, 2008. — 185 s.
Bidjuk P.I. Proektuvannja komp’juternykh informatsijnykh system pidtrymky pryjnjattja rishen': navch. posib. / P.I. Bidjuk, L.O. Korshevnjuk. — K.: NNK "IPSA" NTUU "KPI", 2010. — 340 s.
Pankratova N.D. Modeli i metody analizu iyerarkhij: Teorija. Zastosuvannja: navch. posib. / N.D. Pankratova, N.I. Nedashkivs'ka. — K.: IVTs Vyd-vo "Politekhnika", 2010. — 371 s.
Hierarchies in Distributed Decision Making / Christoph Schneeweiss. — Springer, 2013. — 341 p.
Krupa T. Hierarchical Decision-Making Problems / T. Krupa, T. Ostrowska // Modeling and Solutions. Foundations and Management. The Journal of Warsaw University of Thechnology. — 2016. — Vol. 8, Issue 1. — P. 311–324. — DOI 10:1515/fman-2016-0024.
Evolutionary Multi-Agent Systems: From Inspirations to Applications / A. Byrski, M. Kisiel-Dorohinicki. — Springer. — 2017. — 224 p.
Zheng Y. Consensus of Hybrid Multi-Agent Systems / Y. Zheng, J. Ma, L. Wang // IEEE Transactions on Neural Networks and Learning Systems. — 2018. — Vol. 29, Issue 4. — P. 1359–1365. — DOI: 10.1109/TNNLS. 2017.2651402.
Katrenko A.V. Mekhanizmy koordynatsiyi u skladnykh iyerarkhichnykh systemakh / A.V. Katrenko, I.V. Savka / Informatsijni systemy ta merezhi: visn. NU "L'vivs'ka politekhnika". — 2008. — № 631. — S. 156 – 166.
Sun Z. Cooperative Coordination and Formation Control for Multi-agent Systems / Z. Sun. — Springer. — 2018. — 179 p.
Veetil V.P. Coordination in Centralized and Decentralized Systems / V. P. Veetil // International Journal of Microsimulation. — 2017. — N 10 (2). — P. 86–102.
Romanjuk S.A. Detsentralizatsija: teorija ta praktyka zastosuvannja: monohr. / S.A. Romanjuk. — K., 2018. — 216 s.
Decision Making Under Uncertainty: Theory and Application / M.J. Kochenderfer. — Massachusetts Institute of Thechnology: The MIT Press, 2015. — 323 p.
Harrington J.E. Games, Strategies, and Decision Making / J.E. Harrington, Jr. — Worth Publishers, 2014. — 540 p.
Neyman A. Stochastic Games and Applications / A. Neyman, S. Sorin. — Springer Science & Business Media, 2012. — 473 p.
Kravets' P.O. Ihrova model' samoorhanizatsiyi mul'tyahentnykh system / P.O. Kravets' // Informatsijni systemy ta merezhi: visn. NU "L'vivs'ka politekhnika". — 2015. — № 829. — S. 161–176.
Kravets' P.O. Ihrova model' pryjnjattja rishen' v iyerarkhichnykh systemakh / P.O. Kravets' // Informatsijni systemy ta merezhi: visn. NU "L'vivs'ka politekhnika". — 2017. — № 872. — S. 111–120.
Kravets' P.O. Ihrova model' systemy z avtorytarnym pryjnjattjam rishen' / P.O. Kravets' // Informatsijni systemy ta merezhi: visn. NU "L'vivs'ka politekhnika". — 2018. — № 901. — S. 61–67.
Burkov V.N. Teorija aktivnyh sistem: sostojanie i perspektivy / V.N Burkov, D.A. Novikov. — M. Sinteg, 1999. — 128 s.
Ajzerman M.A. Vybor variantov: osnovy teorii / M.A. Ajzerman, V.F. Aleskerov. — M.: Nauka, 1990. — 240 s.
Nazin A.V. Adaptivnyj vybor variantov / A.V. Nazin, A.S. Poznjak. — M.: Nauka, 1986. — 288 s.
Germejer Ju.B. Igry s neprotivopolozhnymi interesami / Ju.B. Germejer. — M.: Nauka, 1976. — 328 s.
Gubko M.V. Teorija igr v upravlenii organizatsionnymi sistemami / M.V. Gubko, D.A. Novikov. — M.: Sinteg, 2002. — 148 s.
Novikov D.A. Igry i seti / D.A. Novikov // Matematicheskaja teorija igr i ee prilozhenija. — T. 2, Vyp. 1. — 2010. — S. 107–124.
Tadelis S. Game Theory: An Introduction / S. Tadelis. — Princeton University Press, 2013. — 416 p.
Petrosjan L.A. Game Theory and Application / L.A. Petrosjan, V.V. Mazalov. — New York: Nova Science Publishers, 2007. — 227 p.
Ungureanu V. Pareto-Nesh-Stackelberg Game and Control Theory: Intelligent Paradigms and Applications / V. Ungureanu. — Springer, 2018. — 343 p.
Neogy S.K. Mathematical Programming and Game Theory / S.K. Neogy, R.B. Bapat, D. Dubey. — Springer, 2018. — 226 p.
Kushner H. Stochastic Approximation and Recursive Algorithms and Applications / H. Kushner, G. George Yin. — Springer Science & Business Media, 2013. — 417 p.