Functional sequences with fuzzy argument: convergence of level sets
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2019.3.12Keywords:
fuzzy number, level set, functional sequence, convergenceAbstract
The main consideration subject is functional sequences fn(A) with convex upper semicontinuous fuzzy number A for argument; it is supposed that limn→∞fn(x)=f(x), and this convergence is uniform on each closed interval within suppA. The paper proposes sufficient conditions for fn(A) to converge in the sense that a sequence of level sets [fn(A)]α converges with respect to Hausdorff distance dH([fn(A)]α,[f(A)]α). It is proved that: limn→∞dH([fn(A)]α,[f(A)]α)=0 for each 0<α≤1 assuming continuity of fn(x) (n≥1) and f(x), without the assumption about an existence of a derivative. Also, it is proved that a sequence fn(A) (n≥1) converges with respect to distance ρ(fn(A),f(A))=sup0<α≤1dH([fn(A)]α,[f(A)]α) in the space of fuzzy sets, additionally assuming that fn(A) converges uniformly on the whole suppA. In this case, for the sake of finiteness of Hausdorff distance for all 0<α≤1, fuzzy set A is supposed to be normal.References
Orlovskij S.A. Problemy prinjatija reshenij pri nechetkoj ishodnoj informatsii / S.A. Orlovskij. — M.: Nauka, 1981. — 208 s.
Zade L.A. Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij / L.A. Zade. — M.: Mir, 1976. —176 s.
Mizumoto M. Algebraic Properties of Fuzzy Numbers / M. Mizumoto, K. Tanaka // Proceedings of IEEE International Conference on Cybernetics and Society. — 1976. — P. 559–563.
Delgado M. Fuzzy numbers, definitions and properties / M. Delgado, J.L. Verdegay, M.A. Vila // Mathware & Soft Computing 1. — 1994. — N 1 (1). — P. 31–43.
Dubois D. Fuzzy Real Algebra: Some Results / D. Dubois, H. Prade // Fuzzy Sets and Systems. — 1979. — N 4 (2). — P. 327–348.
Inaida J. Taylor Series on the Fuzzy Number Space // Special Issue on Biometrics And Its Applications. — 2010. — N 16 (1). — P. 15–25.
Tripathy B.C. On Convergence of Series of Fuzzy Real Numbers / B.C. Tripathy, P.C. Das // Kuwait Journal of Science & Engineering. — 2012. — N 39 (1A). — P. 57–70.
Spektorskij I.Ja. Posledovatel'nosti funktsij i rjady Tejlora s nechetkim argumentom / I.Ja. Spektorskij // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2014. — № 2. — S. 125–140.
Natanson I.P. Teorija funktsij veschestvennoj peremennoj / I.P. Natanson. — M.: Nauka, 1974. — 480 s.
Kadets V.M. Kurs funktsional'nogo analiza / V.M. Kadets. —H.: Har'k. nats. un-t imeni V. Karazina, 2006. — 607 s.