Finding of periodic solution of the Mathieu equation with the delay

Authors

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2019.1.10

Keywords:

Mathieu equation, periodic solutions, nonlinear delayed differential equation, periodic boundary problem, the Green function, self-adjoint differential operator

Abstract

The work suggests an approach for finding periodic solution of the nonlinear delayed differential Mathieu equations applied in the theory of oscillatory processes. The application of the numerical-analytical method to finding periodic solutions of this equation is known. This idea includes reducing the equation to the system of the first order. The article proposes the use of the previously developed method for finding periodic solutions of nonlinear second-order ordinary differential equations, also used for equations with delay, without being reduced to a system. In this case, the Green's function is constructed for a self-adjoint differential operator of the second derivative, defined on functions that satisfy periodic boundary conditions. The necessary and sufficient conditions for the existence of a periodic solution of the Mathieu equation are given. The solution itself is found by the method of successive approximations. The estimates for the method's rate of convergence were obtained.

Author Biography

Yuriy Ye. Bokhonov, ESC "IASA" Igor Sikorsky KPI, Kyiv

Yuriy Bokhonov,

Candidate of Physical and Mathematical Sciences (Ph.D.), an associate professor at ESC "IASA" Igor Sikorsky KPI, Kyiv, Ukraine.

References

Bokhonov Ju.Ye. Pro odyn pidkhid do znakhodzhennja periodychnykh rozv’jazkiv nelinijnoho zvychajnoho dyferentsial'noho rivnjannja druhoho porjadku / Ju.Ye. Bokhonov // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2012. — № 2. — S. 138–143.

Bokhonov Ju.Ye. Znakhodzhennja periodychnykh rozv’jazkiv zvychajnoho nelinijnoho dyferentsial'noho rivnjannja druhoho porjadku iz zapiznennjam / Ju.Ye. Bokhonov // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2016. — № 4. — S. 133–140.

Mitropol'skij Ju.A. Periodicheskie i kvaziperiodicheskie kolebanija sistem s zapazdyvaniem / Ju.A. Mitropol'skij, D.I. Martynjuk. — K.: Vischa shk., 1979. — 248 s.

Mitropol'skij Ju.A. Sistemy evoljutsionnyh uravnenij s periodicheskimi i uslovno-periodicheskimi koeffitsientami / Ju.A. Mitropol'skij, A.M. Samojlenko, D.I. Martynjuk. — K.: Nauk. dumka, 1984. — 213 s.

Published

2019-03-25

Issue

Section

Methods of optimization, optimum control and theory of games