CT image denoising based on locally adaptive thresholding
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2019.4.04Keywords:
repagular wavelet transform, statistical noise reduction, x-ray computed tomographyAbstract
The noise in reconstructed X-ray Computed Tomography (CT) slices is complex, non-stationary and indefinitely distributed. Subsequent image processing is needed in order to achieve a good-quality medical diagnosis. It requires a sufficiently great ratio between the detailed contrasts and the noise component amplitude. This paper presents an adaptive method for noise reduction in CT images, based on the local statistical evaluation of the noise component in the domain of Repagular Wavelet Transformation (RWT). Considering the spatial dependence of the noise strength, the threshold constant for processing the high frequency coefficients in the proposed shrinkage method is a function of the local standard deviation of the noise for each pixel of the image. Experimental studies have been conducted using different images in order to evaluate the effectiveness of the proposed algorithm.References
Ehman E.C. Methods for Clinical Evaluation of Noise Reduction Techniques in Abdominopelvic CT / E.C. Ehman. — 2014. — Available at: https://doi.org/10.1148/ rg.344135128.
La P.J. Penalized-Likelihood Sinogram Restoration for Computed Tomography / P.J. La, J. Bian, Ph.A. Vargas // IEEE Trans. Med. Imaging. — 2011. — Vol. 25, N 8. — P. 1022–1036.
Manduca A. Projection Space Denoising with Bilateral Filtering and CT Noise Modelling for Dose Reduction in CT / A. Manduca, L. Yu, J.D. Trzasko et al. // Medical Physics. — 2009. — Vol. 36, N 11. — P. 4911–4919.
Tang S. Statistical CT Noise Reduction with Multiscale Decomposition and Penalized Weighted Least Squares in the Projection Domain / S. Tang, X. Tang // Medical Physics. — 2012. — Vol. 39, N 9. — P. 5498–5512.
Cui X. The Statistical Sinogram Smoothing via Adaptive-Weighted Total Variation Regularization for Low-Dose X-ray CT / X. Cui, Zh. Gui, Q. Zhang et al. // Optik – International Journal for Light and Electron Optics. — 2014. — Vol. 125, N 18. — P. 5352–5356.
Motwani M.C. Survey of Image Denoising Techniques / M.C. Motwani, M.C. Gadiya, R.C. Motwani, F.C. Harris // Proceedings of Global Signal Processing Expo and Conference (GSPx ’04). — 2004. — P. 27–30.
Yang Z. Adaptive Weighted Anisotropic Diffusion for Computed Tomography Denoising / Z. Yang, M.D. Silver, Y. Noshi / in Proc. 11thInternational Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine, Potsdam, Germany. — 2011. — P. 210–213.
Naimi H. Medical Image Denoising Using Dual Tree Complex Thresholding Wavelet Transform and Wiener Filter /H. Naimi, A.B.H. Adamou-Mitiche, L. Mitiche // J. King Saud Univ. Comput. Inf. Sci. — 2015. — Vol. 27, N 1. — P. 40–45.
Singh S. Nonsubsampled Shearlet Based CT and MR Medical Image Fusion Using Biologically Inspired Spiking Neural Network / S. Singh, D. Gupta, R.S. Anand, Vinod Kumar // Biomedical Signal Processing and Control. — 2015. — Vol. 18. — P. 91–101.
Shen Y. Wavelet-Based Total Variation and Nonlocal Similarity Model for Image Denoising / Y. Shen, Qing Liu, Shuqin Lou, Ya-Li Hou // IEEE Signal Processing Letters. — 2017. — Vol. 24, N 6. — P. 877–881.
Borsdorf A. Adaptive Filtering for Noise Reduction in X-ray Computed Tomography, PhD Thesis, University of Erlangen / A. Borsdorf. — 2009. — 180 p. — Available at: http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/ 2009/Borsdorf09-AFF.pdf
Beister M. Iterative Reconstruction Methods in X-ray CT / M. Beister, D. Kolditz, W.A. Kalender // Physica Medica. — 2012. — Vol. 28, N 2. — P. 94–108.
Wang Y. An Adaptive Nonlocal Filtering for Low-Dose CT in Both Image and Projection Domains / Y. Wang, S. Fu, W. Li, C. Zhang // Journal of Computational Design and Engineering. — 2015. — Vol. 2, N 2. — P. 113–118.
Beekman F.J. Ordered Subset Reconstruction for X-ray CT / F.J. Beekman, C. Kamphuis // Int. J. Med. Phys. Res. Practice 46. — 2001. — P. 1835–1844.
Qiu D. Does Iterative Reconstruction Improve Image Quality and Reduce Dose in Computed Tomography? / D. Qiu, E. Seeram // Radiology: Open Journal. — 2016. — Vol. 1, N 2. — P. 42–54.
Van Eyndhoven G. Iterative Reconstruction Methods in X-ray CT / G. Van Eyndhoven, J. Sijbers // Handbook of X-ray Imaging: Physics and Technology. — Chapter 34. — Boca Raton, Fl., USA: CRC Press, 2018. — P. 693–712.
Buzug T. Einführung in die Computertomographie / T. Buzug // Springer-Verlag, Berlin Heidelberg, 2004.
Tischenko O. An Artefact-free Structure-Saving Noise Reduction Using the Correlation Between Two Images for Threshold Determination in the Wavelet Domain / O. Tischenko, C. Hoeschen, E. Buhr // Proc. SPIE 5747, San Diego, California, United States. — 2005. — P. 1066–1075.
Borsdorf A. Multiple CT-Reconstructions for Locally Adaptive Anisotropic Wavelet Denoising /A. Borsdorf, R. Raupach, J. Hornegger // International Journal of Computer Assisted Radiology and Surgery. — 2008. — Vol. 2, N 5. — P. 255–264.
Poliakova M. The Morphological Method of Contour Image Segmentation Based on Repagular Wavelet Transform / M. Poliakova, V. Krylov // Proceedings of Odessa Polytechnic University. — 2006. — Vol. 1, N 25. — S. 98–103 (in Russian).
Oppelt A. Imaging Systems for Medical Diagnostics /A. Oppelt. — Publicis Corporate Publishing, Erlangen. — 2006.
Bruder H. Design Considerations in Cardiac CT / H. Bruder, K. Stierstorfer, C. McCullough et al. // Medical Imagining 2006: Physics of Medical Imaging. Proceedings of the SPIE. — 2006. — P. 151–163.
Natterer F. The Mathematics of Computerized Tomography / F. Natterer. — Stuttgart:Wiley and B.G. Teubner, 1986.
Donoho D.L. Ideal Spatial Adaptation by Wavelet Shrinkage / D.L. Donoho, I.M. Johnstone // Biometrika. — 1994. — Vol. 81, N 3. — P. 425–455.