Mathematical modeling of the stress state of an orthotropic piezoelectric material with a spheroidal cavity under internal pressure
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2019.3.10Keywords:
mathematical modeling, orthotropic piezoelectric material, system of electro-elasticity equations, spheroidal cavity, internal pressure, stress stateAbstract
On the basis of mathematical modeling, the stress state of an orthotropic electro-elastic space with a spheroidal cavity under internal pressure is investigated. The solution of the problem is obtained by using the Eshelby equivalent method, generalized to the case of an orthotropic piezoelectric material, and the integral representation of the Green’s function for an orthotropic electroelastic space. Testing of the algorithm for solving the problem for a special case (for a transversely isotropic electrical-elastic material with a spheroidal cavity) confirms its effectiveness. The numerical studies of the stress state in an orthotropic electroelastic material with a cavity under internal pressure were carried out, characteristic patterns of the stress distribution were found.References
Lehnitskij S.G. Teorija uprugosti anizotropnogo tela / S.G. Lehnitskij. — M.: Nauka, 1977. — 415 s.
Kaloerov S.A. Thermostressed State of an Anisotropic Plate with Holes and Cracks / S.A. Kaloerov, Yu.S. Antonov // Int. Appl. Mech. — 2005. — 41, N 9. — P. 1066–1075.
Kirilyuk V.S. Stress State of a Transversely Isotropic Medium with Arbitrarily Orientated Spheroidal Inclusion / V.S. Kirilyuk, O.I. Levchuk // Int. Appl. Mech. — 2005. — 41, N 2. — P. 137–143.
Kirilyuk V.S. The Stress State of an Elastic Orthotropic Medium with an Ellipsoidal Cavity / V.S. Kirilyuk // Int. Appl. Mech. — 2005. — 41, N 3. — P. 302–308.
Kiriljuk V.S. O naprjazhennom sostojanii transversal'no-izotropnoj sredy s proizvol'no orientirovannoj sferoidal'noj polost'ju ili diskoobraznoj treschinoj pod vnutrennim davleniem / V.S. Kiriljuk, O.I. Levchuk // Problemy prochnosti. — 2005. — N 5. — S. 58–70.
Kiriljuk V.S. O vlijanii orientatsii sferoidal'nyh polostej ili zhestkih vkljuchenij v ortotropnoj srede na kontsentratsiju naprjazhenij / V.S. Kiriljuk // Problemy prochnosti. — 2006. — № 1. — S. 58–68.
Grinchenko V.T. Elektrouprugost' / V.T. Grinchenko, A.F. Ulitko, N.A. Shul'ga // Mehanika svjazannyh polej v elementah konstruktsij: v 6 t.; T. 1. — K.: Nauk. dumka, 1989. — 279 s.
Podil'chuk Yu.N. Exact Analytical Solutions of Static Electroelastic and Thermoelectroelastic Problems for a Transversely Isotropic Body in Curvilinear Coordinate Systems / Yu.N. Podil'chuk // Int. Appl. Mech. 2003. — 39, N 2. — P. 132–170.
Kaloerov S.A. Two-Dimensional Electroelastic Problem for a Multiply Connected Piezoelectric Body / S.A. Kaloerov, A.I. Baeva, Yu.A. Glushchenko // Int. Appl. Mech. — 2003. — 39, N 1. — P. 77–84.
Dai L. Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids / L. Dai, W. Guo, X. Wang // Int. J. Solids and Struct. 2006. — 43, N 6. — P. 1818–1831.
Dunn M.L. Electroelastic Field Concentrations In and Around Inhomogeneities In Piezoelectric Solids / M.L. Dunn, M. Taya // J. Appl. Mech. 1994. — 61, N 4. — P. 474– 475.
Mikata Y. Explicit determination of piezoelectric Eshelby tensors for a spheroidal inclusion / Y. Mikata // Int. J. Solids and Struct. 2001. — 38, N 40–41. — P. 7045–7063.
Podil'chuk Yu.N. Stress State of a Transversely Isotropic Piezoceramic Body with Spheroidal Cavity / Yu.N. Podil'chuk, I.G. Myasoedova // Int. Appl. Mech. 2004. — 40, № 11. — P. 1269–1280.
Chiang C.R. The nature of stress and electric-displacement concentrations around a strongly oblate cavity in a transversely isotropic piezoelectric material / C.R.Chiang, G.J. Weng // Int. J. Fract. 2005. — 134, N 3–4. — P. 319–337.
Kyryljuk V.S. Matematychne modeljuvannja i analiz napruzhenoho stanu u ortotropnomu p’yezoelektrychnomu seredovyshchi z kruhovoju trishchynoju / V.S. Kyryljuk, O.I. Levchuk, O.V. Havrylenko // Systemni doslidzhennja ta infomatsijni tekhnolohiyi. — 2017. — № 3. — S. 117–126. https://doi.org/10.20535/SRIT.2308-8893.2017.3.11
Kirilyuk V.S. Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack / V.S. Kirilyuk, O.I. Levchuk // International Applied Mechanics. — 2017. — 53, N 3. — P. 305–312.
Zhou Y.Y. Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections / Y.Y Zhou, W.Q Chen, C.F. Lu // Composite Structures. — 2010. — 92, N 4.– P. 1009–1018
Shul'ha M.O. Rezonansni elektromekhanichni kolyvannja p′yezoelektrychnykh plastyn / M.O. Shul'ga, V.L. Karlash. — K.: Nauk. dumka, 2008. — 270 s.