A literature review of abstractive summarization methods


  • D. V. Shypik Educational and Scientific Complex "Institute for Applied System Analysis" of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine https://orcid.org/0000-0002-7667-4701
  • Petro I. Bidyuk Educational and Scientific Complex "Institute for Applied System Analysis" of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine https://orcid.org/0000-0002-7421-3565




natural language processing, text summarization, abstractive text summarization, sequence to sequence models


The paper contains a literature review for automatic abstractive text summarization. The classification of abstractive text summarization methods was considered. Since the emergence of text summarization in the 1950s, techniques for summaries generation were constantly improving, but because the abstractive summarization require extensive language processing, the greatest progress was achieved only recently. Due to the current fast pace of development of both Natural Language Processing in general and Text Summarization in particular, it is essential to analyze the progress in these areas. The paper aims to give a general perspective on both the state-of-the-art and older approaches, while explaining the methods and approaches. Additionally, evaluation results of the research papers are presented.

Author Biographies

D. V. Shypik, Educational and Scientific Complex "Institute for Applied System Analysis" of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Danylo Volodymyrovych Shypik,

a Ph.D. student at the Department of Mathematical Methods of System Analysis of Educational and Scientific Complex "Institute for Applied System Analysis" of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Research areas: methods of natural language processing.

Petro I. Bidyuk, Educational and Scientific Complex "Institute for Applied System Analysis" of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Petro Bidyuk,

Dr. of Eng. Sci., a professor at Educational and Scientific Complex "Institute for Applied System Analysis" of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

Graduated from the Kyiv Polytechnic Institute in 1972. He got his Ph.D. (Candidate of Sciences) degree in Control Engineering in 1986, and Doctor of Engineering Sci. in 1996.

Current areas of interest: Time Series Analysis, Forecasting and Control, Bayesian Data Analysis, and Decision Support Systems (design and implementation).


Jones S.K. Automatic summarizing: factors and directions [Online] / S. K. Jones // MIT Press. — 1999. — Available at: https://www.cl.cam.ac.uk/archive/ksj21/ksjdigipapers/summbook99.pdf.

Multi-document summarization by sentence extraction [Online] / J.S. Goldstein, V. Mittal, J.G. Carbonell, M. Kantrowitz. — 2000. — Available at:: http://scholar.google.com.ua/scholar_url?url=https://kilthub.cmu.edu/articles/Multi-Document_Summarization_By_Sentence_Extraction/6624470/files/ 12121496.pdf&hl=uk&sa=X&scisig=AAGBfm3dUni3D9yq1qbG7bN3z4ow9ChpyA&nossl=1&oi=scholarr.

Lloret E. Text summarisation in progress: a literature review / E. Lloret, M. Palomar // Artificial Intelligence Review. — 2011. — N 37. — P. 1–41.

Genest P. HEXTAC: the Creation of a Manual Extractive Run [Online] / P. Genest, G. Lapalme, M. Yousfi-Monod. — 2009. — Available at: http://www.mymcorner.net/files/Genest-Lapalme-Yousfi-Monod-09.pdf.

Hasler L. From extracts to abstracts: human summary production operations for computer-aided summarisation [Online] / L. Hasler. — 2007. — Available at: http://rgcl.wlv.ac.uk/events/CALP07/papers/10.pdf.

Erkan G. Lexrank: graph-based lexical centrality as salience in text summarization / G. Erkan, D. Radev // Journal of Artificial Intelligence Research. — 2004. — Vol. 22. — P. 457–479.

A perspective-based approach for solving textual entailment recognition [Online] / O.Ferrandez, D. Micol, R. Munoz, M. Palomar. — 2007. — Available at: https://www.researchgate.net/profile/Joao_Cordeiro11/ publication/234803426_Biology_Based_Alignments_of_Paraphrases_for_Sentence_Compression/links/560fa81b08ae0fc513ef311e/Biology-Based-Alignments-of-Paraphrases-for-Sentence-Compression.pdf#page=80.

Filippova K. Multi-Sentence Compression: Finding Shortest Paths in Word Graphs [Online] / K. Filippova. — 2010. — Available at: https://www.aclweb.org/anthology/C10-1037.pdf.

Gardner J. An integrated framework for de-identifying unstructured medical data [Online] / J. Gardner, L. Xiong // Elsevier. — 2009. — Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi= rep1&type=pdf.

Hliaoutakis A. The AMTEx approach in the medical document indexing and retrieval application / A. Hliaoutakis, K. Zervanou, E. Petrakis // Data & Knowledge Engineering. — 2009. — N 68. — P. 380–392.

Ganesan K. Opinosis: A Graph Based Approach to Abstractive Summarization of Highly Redundant Opinions [Online] / K. Ganesan, C. Zhai, H. Jiawei. — 2010. — Available at: https://www.aclweb.org/anthology/C10-1039.pdf.

Lloret E. Analyzing the Use of Word Graphs for Abstractive Text Summarization [Online] / E. Lloret, M. Palomar. — 2011. — Available at: https://pdfs.semanticscholar.org/7d25/67d7eefc772865992e93996c1cd7f6ba6319.pdf.

Banerjee S. Multi-document abstractive summarization using ILP based multisentence compression [Online] / S. Banerjee, P. Mitra, K. Sugiyama. — 2015. — Available at: https://www.ijcai.org/Proceedings/ 15/Papers/174.pdf.

Ganest P. Framework for Abstractive Summarization — Available at: https://pdfs.semanticscholar.org/fdf9/e7d06bf21093e29923742d2040b0e495bc1d.pdf.

Khan A. A framework for multi-document abstractive summarization based on semantic role labelling / A. Khan, N. Salim, Jaya Kumar Y. // Appl Soft Comput 30:737–747. — 2015. — doi:10.1016/j.asoc.2015.01.070

Zajic D. BBN/UMD at DUC-2004:Topiary [Online] / D. Zajic, B. Dorr, R. Schwartz. — 2004. — Available at: http://users.umiacs.umd.edu/ ~bonnie/Publications/Attic/DUC2004-HEADLINE.pdf.

Clarke J. Global inference for sentence compression an integer linear programming approach / J. Clarke, M. Lapata // Journal of Artificial Intelligence Research. — 2008. — N 31. — P. 399–429.

Woodsend K. Title Generation with Quasi-Synchronous Grammar [Online] / K. Woodsend, Y. Feng, M. Lapata. — 2010. — Available at: https://www.research.ed.ac.uk/portal/files/23634327/2010_Woodsend_Feng_ET_AL_Title_Generation_with_Quasi_Synchronous_Grammar.pdf.

Abstractive Multi-Document Summarization via Phrase Selection and Merging [Online] / L. Bing, P. Li, Y. Liao et al. — 2015. — Available at: https://www.cs.cmu.edu/~lbing/pub/acl2015-bing.pdf.

Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization [Online] / Z. Cao, W. Li, F. Wei, S. Li. — 2018. — Available at: https://pdfs.semanticscholar.org/c93b/8518204ef722f4c749628023c6d5d061a5fa.pdf.

Learning Phrase Representations using RNN Encoder–Decoderfor Statistical Machine Translation [Online] / K. Cho, B. Merrienboer, C. Gulcehre et al. — 2014. — Available at: https://www.aclweb.org/anthology/ D14-1179.pdf.

Sutskever I. Sequence to Sequence Learning with Neural Networks [Online] / I. Sutskever, O. Vinyals, Q.V. Le. — 2014. — Available at: https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Schuster M. Bidirectional recurrent neural networks / M. Schuster, K. Paliwal // IEEE Transactions on Signal Processing. — 1997. — N 45. — P. 2673–2681.

Bahdanau D. Neural machine translation by jointly learning to align and translate [Online] / D. Bahdanau, K. Cho, Y. Bengio. — 2015. — Available at: https://arxiv.org/pdf/1409.0473.pdf.

Rush A.M. A Neural Attention Model for Sentence Summarization [Online] / A.M. Rush, S. Chopra, J. Weston. — 2015. — Available at: https://www.aclweb.org/anthology/D15-1044.pdf.

Napoles C. Annotated Gigaword [Online] / C. Napoles, M. Gormley, B. Van Durme. — 2012. — Available at: https://www.cs.cmu.edu/~mgormley/ papers/napoles+gormley+van-durme.naaclw.2012.pdf.

On the Properties of Neural Machine Translation: Encoder–Decoder Approaches [Online] / K.Cho, B. Van Merrienboer, D. Bahdanau, Y. Bengio. — 2014. — Available at: https://arxiv.org/pdf/1409.1259.pdf.

Empirical evaluation of gated recurrent neural networks on sequence modeling [Online] / J.Chung, Ç. Gülçehre, K. Hyun Cho, Y. Bengio. — 2014. — Available at: https://arxiv.org/pdf/1412.3555.pdf.

On Using Very Large Target Vocabulary forNeural Machine Translation [Online] / S. Jean, K. Cho, R. Memisevic, Y. Bengio. — 2014. — Available at: https://www.aclweb.org/anthology/P15-1001.pdf.

Nallapati R. Sequence-to-sequence RNNs for text summarization [Online] / R. Nallapati, B. Xiang, B. Zhou. — 2016. — Available at: https://pdfs.semanticscholar.org/033b/c4febf590f6e011e9b0f497cadfe6a4c292d.pdf.

Abstractive text summarization using sequence-to-sequence RNNs and beyond [Online] / R. Nallapati, B. Zhou, C. Santos et al. — 2016. — Available at: https://arxiv.org/pdf/1602.06023.pdf.

Nallapati R. SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents [Online] / R. Nallapati, F. Zhai, B. Zhou. — 2017. — Available at: https://arxiv.org/pdf/ 1611.04230.

See A. Get To The Point: Summarization with Pointer-Generator Networks [Online] / A. See, P.J. Liu, C.D. Manning. — 2017. — Available at: https://arxiv.org/pdf/1704.04368.

Selective Encoding for Abstractive Sentence Summarization [Online] / Q. Zhou, N. Yang, F. Wei, M. Zhou. — 2017. — Available at: https://www.aclweb.org/anthology/P17-1101.pdf.

Wang K. BiSET: Bi-directional Selective Encoding with Template for Abstractive Summarization [Online] / K. Wang, X. Quan, R. Wang. — 2017. — Available at: https://www.aclweb.org/anthology/P19-1207.pdf.

Bidirectional attention flow for machine comprehension [Online] / M. Seo, A. Kembhavi, A. Farhadi, H. Hajishirzi. — 2017. — Available at: https://arxiv.org/pdf/1611.01603.pdf.






Decision making and control in economic, technical, ecological and social systems