Game strategies for decision making in hierarchical systems. II. Computer simulation of stochastic game
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2019.4.11Keywords:
decision making, hierarchical system, conditions of uncertainty, stochastic game, computer modellingAbstract
An algorithm for solving a stochastic game for decision making in hierarchical systems under uncertainty is developed. An analysis of the results of computer modeling of a stochastic game for autocratic, anarchic and democratic hierarchical decision making systems with the binary tree structure is performed. It has been established that autocratic-centric hierarchical systems have the smallest training time for achieving a close-to-consensus solution. The influence of parameters on the convergence of the game method in the process of finding a consensus or a majoritarian collective solution is studied.References
Hierarchies in Distributed Decision Making / Christoph Schneeweiss. — Springer, 2013. — 341 p.
Nedashkivs'ka N.I. Metodolohija ta instrumentarij pidtrymky pryjnjattja rishen' na osnovi iyerarkhichnykh ta merezhevykh modelej: dys. … doktora tekhn. nauk: 01.05.04 / N. I. Nedashkivs'ka. — K.: NNK "IPSA" NTUU "KPI", 2018. — 407 s. — [Digital source]. — Available at: http://ela.kpi.ua/bitstream/123456789/25119/1/Nedashkivska_diss.pdf.
Kravets' P.O. Ihrova model' pryjnjattja rishen' v iyerarkhichnykh systemakh / P.O. Kravets' // Informatsijni systemy ta merezhi: visn. NU "L'vivs'ka politekhnika". — 2017. — № 872. — S. 111–120.
Kravets' P.O. Ihrova model' systemy z avtorytarnym pryjnjattjam rishen' / P.O. Kravets' // Informatsijni systemy ta merezhi: visn. NU "L'vivs'ka politekhnika". — 2018. — № 901. — S. 61–67.
Germejer Ju.B. Igry s neprotivopolozhnymi interesami / Ju.B. Germejer. — M.: Nauka, 1976. — 328 s.
Harrington J. E., Jr. Games, Strategies, and Decision Making / J.E. Harrington, Jr. — Worth Publishers, 2014. — 540 p.
Grabisch M. Set Functions, Games and Capacities in Decision Making / M. Grabisch. — Springer, 2016. — 473 p. — DOI: 10.1007/978-3-319-30690-2.
Ummels M. Stochastic Multiplayer Games: Theory and Algorithms / M. Ummels. — Amsterdam University Press, 2014. — 174 p.
Petrosjan L.A. Game Theory and Application / L.A. Petrosjan, V.V. Mazalov. — Nova Science Publishers, 2002. — 295 p.
Ungureanu V. Pareto-Nesh-Stackelberg Game and Control Theory: Intelligent Paradigms and Applications / V. Ungureanu. — Springer, 2018. — 343 p.
Wooldridge M. An Introduction to Multiagent Systems / M. Wooldridge. — John Wiley & Sons, 2009. — 461 p.
Radley N. Multi-Agent Systems – Modeling, Control, Programming, Simulations and Applications / N. Radley. — Scitus Academics LLC, 2017. — 284 p.
Iterative Learning Control for Multi-agent Systems Coordination / S. Yang, J.-X. Xu, X. Li, D. Shen. — John Wiley & Sons, 2017. — 272 p.
Sun Z. Cooperative Coordination and Formation Control for Multi-agent Systems / Zhiyong Sun. — Springer, 2018. — 179 p.
Agent for Games and Simulations: Trends in Techniques, Concepts and Design / F. Dignum, J.Bradshaw, B. G. Silverman, W. van Doesburg. — Springer, 2009. — 237 p.
Bekker K. The Guide to Computer Simulation and Games / K. Bekker, J.R. Parker. — John Wiley and Sons, 2011. — 456 p.
Simulation of Decision-Making as Active Learning Tools: Design and Effects of Political Science Simulations / P.Bursens, V. Donche, D. Gijbels, P. Spooren (Editors). — Springer, 2018. — 206 p.
Nazin A.V. Adaptivnyj vybor variantov / A.V. Nazin, A.S. Poznjak. — M.: Nauka, 1986. — 288 s.
Kushner H. Stochastic Approximation and Recursive Algorithms and Applications / H. Kushner, G. G. Yin. — Springer Science & Business Media, 2013. — 417 p.
Benveniste A. Adaptive Algorithms and Stochastic Approximations / A. Benveniste, M. Metivier, P. Priouret. — Springer Science & Business Media, 2012. — 365 p.