Adaptive forecasting and financial risk estimation
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2020.1.04Keywords:
economic and financial processes, adaptive modeling, forecasting nonlinear nonstationary processes, uncertainties, system analysis, decision support systemAbstract
The study is directed towards development of an adaptive decision support system for modeling and forecasting nonlinear nonstationary processes in economy, finances and other areas of human activities. The structure and parameter adaptation procedures for the regression and probabilistic models are proposed as well as the respective information system architecture and functional layout are developed. The system development is based on the system analysis principles such as adaptive model structure estimation, optimization of model parameter estimation procedures, identification and taking into consideration of possible uncertainties met in the process of data processing and mathematical model development. The uncertainties are inherent to data collecting, model constructing and forecasting procedures and play a role of negative influence factors to the information system computational procedures. Reduction of their influence is favourable for enhancing the quality of intermediate and final results of computations. The illustrative examples of practical application of the system developed proving the system functionality are provided.References
Jao C.S. Efficient decision support systems – practice and challenges from current to future / C.S. Jao. — Rijeka (Croatia): Intech, 2011. — 556 p.
Fernandez G. Data mining using SAS applications / G. Fernandez. — New York: CRC Press LLC, 2003. — 360 p.
Dovgyj S.O. DSS on the basis of statistical and probabilistic methods / S.O. Dovgyj, P.I. Bidyuk, O.M. Trofymchuk. — Kyiv: Logos, 2014. — 419 p.
Zgurowskii M.Z. System analysis: problems, methodology, applications / M.Z. Zgurowskii, N.D. Pankratova. — Kyiv: Naukova Dumka, 2005. — 745 p.
Harris C. Adaptive modeling, estimation and fusion from data / C. Harris, X. Hong, Q. Gan. — Berlin: Springer, 2002. — 322 p.
Harvey A.C. Forecasting, structural time series models and the Kalman filter / A.C. Harvey. — Cambridge: The MIT Press, 1990. — 554 p.
Rasmussen C.E. Gaussian processes for machine learning / C.E. Rasmussen, C.K.I. Williams. — Cambridge (Massachusetts), The MIT Press, 2006. — 248 p.
Bidyuk P.I. Time series analysis / P.I. Bidyuk, V.D. Romanenko, O.L. Tymoshchuk. — Kyiv: Polytechnika, NTUU "KPI", 2013. — 600 p.
Almeida E. Adaptive model rules from data streams / E. Almeida, C. Ferreira, J. Gama // Machine Learning and Knowledge Discovery in Data bases. ECML PKDD-2013. Lecture Notes in Computer Science. — Springer, Berlin. — Vol. 8188. — P. 480–492.
Succarat G. Automated model selection in finance: general-to-specific modeling of the mean, variance and density / G. Succarat, A. Escribano // Oxford Bulletin of Economics and Statistics. — 2012. — Vol. 74, Issue 5. — P. 716–735.
Pretis F. Automated general-to-specific (GETS) regression modeling and indicator saturation for outliers and structural breaks / F. Pretis, J.J. Reade, G. Succarat // Journal of Statistical Software. — 2018. — Vol. 86, Issue 3. — P. 1–44.
Quintana R. Adaptive exponential smoothing versus conventional approaches for lumpy demand forecasting: case of production planning for a manufacturing line / R. Quintana, M.T. Leung // International Journal of Production Research. — 2007. — Vol. 45, Issue 21. — P. 4937–4957.
Giraitis L. Adaptive forecasting in the presence of recent and ongoing structural change / L. Giraitis, G. Kapetanis, S. Price // Journal of Econometrics. — 2013. — Vol. 177, Issue 2. — P. 153–170.
Pesaran M.H. Optimal forecasts in the presence of structural breaks / M.H. Pesaran, A. Pick, M. Pranovich // Journal of Econometrics. — 2013. — Vol. 177, Issue 2. — P. 134–152.
Watsham T.J. Quantitative Methods in Finance / T.J. Watsham, K. Parramore. — London: International Thomson Business Press, 1997. — 395 p.
Xekalaki E. ARCH Models for Financial Applications / E. Xekalaki, S. Degiannakis. — New York: John Wiley & Sons, Ltd, Publication, 2010. — 535 p.
Gibbs B.P. Advanced Kalman filtering, least squares and modeling / B.P. Gibbs. — Hoboken: John Wiley & Sons, Inc., 2011. — 627 p.
Haykin S. Adaptive filter theory / S. Haykin. — Upper Saddle River (New Jersey): Prentice Hall, 2002. — 922 p.
19.Gilks W.R. Markov Chain Monte Carlo in practice / W.R. Gilks, S. Richardson, D.J. Spiegelhalter. — New York: CRC Press LLC, 2000. — 486 p.
Zgurowskii M.Z. System analysis: problems, methodology, applications / M.Z. Zgurowskii, N.D. Pankratova. — Kyiv: Naukova Dumka, 2005. — 743 p.
Anfilatov V.S. System analysis in control engineering / V.S. Anfilatov, A.A. Emelyanov, A.A. Kukushkin. — Moscow: Finansy i Statistika, 2002. — 368 p.
Zgurowskii M.Z. Analytical technics of Kalman filtering / M.Z. Zgurowskii, V.N. Podladchikov. — Kyiv: Naukova Dumka, 1995. — 285 p.
Cowell R.G. Probabilistic networks and expert systems / R.G. Cowell, A.Ph. Dawid, S.L. Lauritzen, D.J. Spiegelhalter. — Berlin: Springer, 1999. — 321 p.
Jensen F.V. Bayesian networks and decision graphs / F.V. Jensen, Th.D. Nielsen. — Berlin: Springer, 2007. — 427 p.
Koski T. Bayesian networks / T. Koski, J.M. Noble. — New York: John Wiley and Sons, Ltd., Publication, 2009. — 347 p.
Zgurowskii M.Z. Methods of constructing Bayesian networks based on scoring functions / M.Z. Zgurowskii, P.I. Bidyuk, O.M. Terentyev // Cybernetics and System Analysis. — 2008. — Vol. 44, N 2. — P. 219–224.
Ng B.M. Adaptive dynamic Bayesian networks / B.M. Ng. // Joint Statistical Meetings. — 2007. — 9 p.
Corriveau G. Bayesian network as an adaptive parameter setting approach for genetic algorithms / G. Corriveau, R. Guilbault, R. Tahan, R. Sabourin // Complex Intelligent Systems. — 2016. — N 1. — P. 1–23.