Fuzzy problem of the optimal set partition with constraints on the subsets centers location

Authors

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2020.1.07

Keywords:

infinite-dimensional mathematical programming, the theory of optimal set partitioning, constraints on the centers location, non-differentiable optimization, fuzzy parameters, Shor's r-algorithm

Abstract

An algorithm is proposed for solving the fuzzy continuous optimal sets partitioning problem with constrains for the centers location. The algorithm is based on a synthesis of methods for solving infinite-dimensional problems of optimal set partitioning from an n-dimensional Euclidean space into subsets with neuro-fuzzy technologies and modifications of the Shor’s r-algorithm, which are used for the numerical solution of dual finite-dimensional nonsmooth optimization problems. The developed software implementation of the algorithm is illustrated on the model problem.

Author Biographies

Elena M. Kiseleva, The Faculty of Applied Mathematics of Oles Honchar Dnipro National University, Dnipro

Elena M. Kiseleva,

Corresponding Member of the National Academy of Sciences of Ukraine, Professor, Doctor of Physical and Mathematical Sciences, Dean of the Faculty of Applied Mathematics of Oles Honchar Dnipro National University, Dnipro, Ukraine.

Olga M. Prytomanova, Oles Honchar Dnipro National University, Dnipro

Olga M. Prytomanova,

Candidate of Economic Sciences, an associate professor at the Department of Computational Mathematics and Mathematical Cybernetics of Oles Honchar Dnipro National University, Dnipro, Ukraine.

References

Kiseleva E.M. The Emergence and Formation of the Theory of Optimal Set Partitioning for Sets of the n-Dimensional Euclidean Space. Theory and Application / E.M. Kiseleva // Journal of Automation and Information Sciences. — 2018. — Vol. 50, Issue 9. — P. 1–24. — DOI: 10.1615/JAutomatInfScien. v50.i9.10.

Kisel'ova O.M. Stanovlennja ta rozvytok teoriyi optymal'noho rozbyttja mnozhyn. Teoretychni i praktychni zastosuvannja: monohr. / O.M. Kisel'ova. — D.: Lira, 2018. — 532 s.

Kisel'ova O.M. Alhorytm rozv’jazannja odniyeyi zadachi optymal'noho rozbyttja z nechitkymy parametramy v tsil'ovomu funktsionali / O.M. Kisel'ova, O.M. Prytomanova, S.V. Zhuravel', V.V. Sharavara // Pytannja prykladnoyi matematyky i matematychnoho modeljuvannja. — D.: Lira, 2018. — S. 91–104. — DOI: 10.15421/321810.

Borisov V.V. Nechetkie modeli i seti / V.V. Borisov, V.V. Kruglov, A.S. Fedulov. — M.: Gorjachaja linija-Telekom, 2015. — 284 s.

Kiseleva E.M. Valuation of Startups Investment Attractiveness Based on Neuro-Fuzzy Technologies / E.M. Kiseleva, O.M. Prytomanova, S.V. Zhuravel // Journal of Automation and Information Sciences. — 2016. — Vol. 48, Issue 9. — P. 1–22. — DOI: 10.1615/JAutomatInfScien.v48.i9.10.

Shor N.Z. Metody minimizatsii nedifferentsiruemyh funktsij i ih prilozhenija / N.Z. Shor. — K.: Nauk. dumka, 1979. — 200 s.

Kiseleva E.M. Nepreryvnye zadachi optimal'nogo razbienija mnozhestv: teorija, algoritmy, prilozhenija: monogr. / E.M. Kiseleva, N.Z. Shor. — K.: Nauk. dumka, 2005. — 564 s.

Published

2020-06-23

Issue

Section

Methods of optimization, optimum control and theory of games