Modeling the contact interaction of two transversally isotropic elastic half-spaces in the presence of a hard disk-like inclusion between them and pressure in the region of separation

Authors

  • Vitaly S. Kirilyuk The Department of Mechanics of Stochastically Inhomogeneous Media of S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-8513-0378
  • Olga I. Levchuk The Department of Mechanics of Stochastically Inhomogeneous Media of S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-6514-6225

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2020.1.10

Keywords:

mathematical modeling, transversely isotropic material, elastic half-space, hard disk-like inclusion, pressure in the region of delamination, contact interaction parameters

Abstract

A rigorous mathematical model is used for analyzing the contact interaction of two transversally isotropic elastic half-spaces with different properties under compression in the presence of a hard disk-like inclusion between them and pressure in the region of material separation. The solution to the problem is obtained by presenting a general solution of the system of equilibrium equations for a transversely isotropic body through harmonic functions, reducing the boundary-value problem to considering the integral equation, expanding the desired function in a small parameter. As a special case, the found contact results for the main contact parameters for two elastic isotropic half-spaces (in the presence of inclusion between them and pressure in the region of separation). Numerical results are obtained, the influence of the elastic properties of half-spaces, the geometric dimensions of the inclusion and loads on the parameters of contact interaction are studied.

Author Biographies

Vitaly S. Kirilyuk, The Department of Mechanics of Stochastically Inhomogeneous Media of S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv

Vitaly Semenovich Kirilyuk,

senior researcher, Doctor of Sciences (Physics and Mathematics), a leading researcher at the Department of Mechanics of Stochastically Inhomogeneous Media of S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Olga I. Levchuk, The Department of Mechanics of Stochastically Inhomogeneous Media of S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv

Olga Ivanivna Levchuk,

Candidate of Sciences (Ph.D.), a senior researcher at the Department of Mechanics of Stochastically Inhomogeneous Media of S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine.

References

Kirilyuk V.S. Modeling of contact interaction of piezoelectric half-space and elastic isotropic base with surface groove of circular section / V.S. Kirilyuk, O.I Levchuk // System research and information technologies. — 2016. — № 4. — P. 120–132.

Kirilyuk V.S. Mathematical modeling of contact interaction of two electroelastic half-spaces under compression with rigid disc-shaped inclusion between them / V.S. Kirilyuk, O.I. Levchuk, O.V. Gavrilenko // System research and information technologies. — 2018. — № 2. — P. 89–98. DOI: 10.20535/SRIT.2308-8893.2018.2.09

Podil’chuk Yu.N. Boundary value problems of statics of elastic bodies [in Russian] / Yu.N. Podil’chuk. — K.: Nauk. dumka, 1984. — 304 p.

Podil’chuk Yu.N. Exact analytic solutions of three-dimensional boundary-value problems of the statics of a transversely isotropic body of canonical form (Survey) / Yu.N. Podil’chuk // International Applied Mechanics. — 1997. — 33, № 10. — P. 763–787.

Borodich F.M. The JKR-type adhesive contact problems for transversely isotropic elastic solids / F.M. Borodich , B.A. Galanov , L.M. Keer , M.M. Suarez-Alvarez // Mechanics of Materials. — 2014. — 75. — P. 34–44.

Chai Y.S. Local tangential contact of elastically similar, transversely isotropic elastic bodies / Y.S. Chai, I.I. Argatov // Meccanica. — 2018. — 53, N 11–12. — P. 3137–3143.

Chen W.Q. 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium / W.Q. Chen, C.W. Lim // Int. J. Fract. — 2005. — 131, N 3. — P. 231–246.

Chen W.Q. General solutions for elasticity of transversely isotropic materials with thermal and other effects: A review / W.Q. Chen, J. Zhu, X.Y. Li // Int. J. Mech. Sciencis. — 2019. — 151. — P. 471–497.

Dai L. Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids / L. Dai, W. Guo, X. Wang // Int. J. Solids and Struct. — 2006. — 43, N 6. — P. 1818–1831.

Davtyan D.B. Action of an elliptic punch on a transversally isotropic half-space/ D.B. Davtyan , D.A. Pozharskii // Mechanics of Solids. — 2014. — 49, N 5. — P. 578–586.

Elliott H.A. Three-dimensional stress distributions in hexagonal aeolotropic crystals / H.A. Elliott, N.F. Mott // Mathematical Proceedings of the Cambridge Philosophical Society. — 1948. — 44, N 4. — P.522–533.

Fabrikant V.I. Contact problem for an arbitrarily oriented transversely isotropic half-space/ V.I. Fabrikant // Acta Mechanca. — 2017. — 228, N 4. — P. 1541–1560.

Freund L.B. Thin Film Materials / L.B. Freund, S. Suresh. — Cambridge: Cambridge University Press, 2003. — 802 p.

Gladwell G.M.L. On Inclusions at a Bi-Material Elastic Interface / G.M.L. Gladwell // Journal of Elasticity. — 1999. — 54, N 1. — P.27–41.

Hou P.F. Three-dimensional exact solutions of homogeneous transversely isotropic coated structures under spherical contact / P.F. Hou, W.H. Zhang, J.-Y. Chen // Int. J. Solids Structures. — 2019. — 161. — P. 136–173.

Kaloerov S.A. Problem of Electromagnet viscoelasticity for Multiply Connected Plates / S.A. Kaloerov, A.A. Samodurov // International Applied Mechanics. — 2015. — 51, N 6. — P. 623–639.

Kaloerov S.A. Determining the intensity factors for stresses, electric-flux density, and electric-field strength in multiply connected electroelastic anisotropic media / S.A. Kaloerov // Int. Appl. Mech. — 2007. — 43, N 6. — P. 631–637.

Kirilyuk V.S. On stressed state of transversely isotropic medium with an arbitraly orientated spheroidal void or penny-shaped crack under internal pressure / V.S. Kirilyuk, O.I. Levchuk // Strength of Materials. — 2005. — 37, N 5. — P. 480–488.

Kirilyuk V.S. Elastic state of a transversely isotropic piezoelectric body with an arbitrarily oriented elliptic crack / V.S. Kirilyuk // Int. Appl. Mech. — 2008. — 44, N 2. — P. 150–157.

Kirilyuk V.S. Stress state of a piezoceramic body with a plane crack opened by a rigid inclusion / V.S. Kirilyuk // Int. Appl. Mech. — 2008. — 44, N 7. — P. 757–768.

Kotousov A. On a rigid inclusion pressed between two elastic half spaces / A. Kotousov, L.B. Neto, A. Khanna // Mechanics of Materials. — 2014. — 68, N 1. — P. 38–44.

Kumar R. Green's function for transversely isotropic thermoelastic diffusion bimaterials / R. Kumar , V. Gupta // Journal of Thermal Stresses. — 2014. — 37, N 10. — P. 1201–1229.

Marmo F. Analytical formulas and design charts for transversely isotropic half-spaces subject to linearly distributed pressures / F. Marmo, F. Toraldo, L. Rosati // Meccanica. — 2016. — 51, N 11. — P. 2909–2928.

Podil’chuk Yu.N. Representation of the general solution of statics equations of the electroelasticity of a transversally isotropic piezoceramic body in terms of harmonic functions / Yu.N. Podil’chuk // International Applied Mechanics. — 1998. — 34, N 7. — P. 623–628.

Selvadurai A.P.S. A unilateral contact problem for a rigid disc inclusion embedded between two dissimilar elastic half-spaces / A.P.S. Selvadurai // Q. J. Mech. Appl. Math. — 1994. — N 3. — P. 493–509.

Tokovyy Yu.V. Three-Dimensional Elastic Analysis of Transversely-Isotropic Composites / Yu.V. Tokovyy, C.C. Ma // Journal of Mechanics. — 2018. — 33, N 6. — P. 821–830.

Wang Y.J. The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material / Y.J. Wang, C.F. Gao, H.P. Song // Mechanics Research Communications. — 2015. — Vol. 65. — P. 17–23.

Wang Z.K. The general solution of three-dimension problems in piezoelectric media / Z.K. Wang, B.L. Zheng // Int. J. Solids Structures. — 1995. — 32, N 1. — P. 105–115.

Yu H.Y. A concise treatment of indentation problems in transversely isotropic half-spaces / H.Y. Yu // Int. J. Solids Struct. — 2001. — 38, N 7. — P. 2213–2232.

Zhao M. Three-dimensional steady-state general solution for transversely isotropic hygrothermoelastic media / M. Zhao, H. Dang, C. Fan, Z. Chen // Journal of Thermal Stresses. — 2018. — 41, N 8. — P. 951–972.

Zhao M.H. Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method / M.H. Zhao, Y. Li, Y. Yan, C.Y. Fan // Engineering Analysis with Boundary Elements. — 2016. — Vol. 67. — P. 115–125.

Zhao M.H. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors / M.H. Zhao, Y.B. Pan, C.Y. Fan, G.T. Xu // International Journal of Solids and Structures. — 2016. — Vol. 94–95. — P. 50–59.

Published

2020-06-23

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research