DOI: https://doi.org/10.20535/SRIT.2308-8893.2020.3.01
Метод семантичної верифікації застосувань у технології GPGPU
Анотація
Ключові слова
Повний текст:
PDF (English)Посилання
Nvidia Data Center – Nvidia, 2018. [Online]. Available: https://www.nvidia.com/ en-us/data-center/. Accessed on: 2019, March 14.
TOP500 Lists TOP500 Supercomputer Sites, 2018. [Online]. Available: https://www.top500.org/lists. Accessed on: 2019, March 14.
A.V. Anisimov, S.D. Pogorilyy, and D.Yu. Vitel, “About the Issue of Algorithms formalized Design for Parallel Computer Architectures”, Applied and Computational Mathematics, vol. 12, no. 2, pp.140–151, 2013.
A. Arnold, Finite Transition Systems: Semantics of Communicating Systems. Paris, France: Prentice Hall, 1994, 177 p.
T. Murata, “Petri nets: properties, analysis and applications”, in Proc. of the IEEE, 77:541.80, 1989.
M. Ben-Ari, Mathematical Logic for Computer Science. UK: Prentice Hall International Ltd, 1993, 305 p.
E.M. Clarke, Jr., O. Grumberg, and D.A. Peled, Model Checking. USA: MIT Press, 1999.
S.D. Pogorilyy, S.L. Kryvyi, and M.S. Slynko, “Model justification of GPU-based applications”, Control Systems and Computers, vol. 4, pp. 46–56, 2018.
S.L. Kryvyi, Linear Diophantine constraints and their applications. Chernivtsi: Bukrek Publishing House, 2015.
S.L. Kryvyi, S.D. Pogorilyy, and M.S. Slynko, “Transition systems as method of designing applications in GPGPU technology”, in Proc. 11-th international scientific and practical conference on programming UkrPROG’2018.
S.L. Kryvyi et al., “Design of Grid Structures on the Basis of Transition Systems with the Substantiation of the Correctness of Their Operation”, Cybernetics and Systems Analysis, vol. 53, no. 1, pp.105–114, New York, USA: Springer Science + Business Media, January 2017.
Пристатейна бібліографія ГОСТ
1. Nvidia Data Center – Nvidia, 2018. [Online]. Available: https://www.nvidia.com/ en-us/data-center/. Accessed on: 2019, March 14.
2. TOP500 Lists TOP500 Supercomputer Sites, 2018. [Online]. Available: https://www.top500.org/lists. Accessed on: 2019, March 14.
3. A.V. Anisimov, S.D. Pogorilyy, and D.Yu. Vitel, “About the Issue of Algorithms formalized Design for Parallel Computer Architectures”, Applied and Computational Mathematics, vol. 12, no. 2, pp.140–151, 2013.
4. A. Arnold, Finite Transition Systems: Semantics of Communicating Systems. Paris, France: Prentice Hall, 1994, 177 p.
5. T. Murata, “Petri nets: properties, analysis and applications”, in Proc. of the IEEE, 77:541.80, 1989.
6. M. Ben-Ari, Mathematical Logic for Computer Science. UK: Prentice Hall International Ltd, 1993, 305 p.
7. E.M. Clarke, Jr., O. Grumberg, and D.A. Peled, Model Checking. USA: MIT Press, 1999.
8. S.D. Pogorilyy, S.L. Kryvyi, and M.S. Slynko, “Model justification of GPU-based applications”, Control Systems and Computers, vol. 4, pp. 46–56, 2018.
9. S.L. Kryvyi, Linear Diophantine constraints and their applications. Chernivtsi: Bukrek Publishing House, 2015.
10. S.L. Kryvyi, S.D. Pogorilyy, and M.S. Slynko, “Transition systems as method of designing applications in GPGPU technology”, in Proc. 11-th international scientific and practical conference on programming UkrPROG’2018.
11. S.L. Kryvyi et al., “Design of Grid Structures on the Basis of Transition Systems with the Substantiation of the Correctness of Their Operation”, Cybernetics and Systems Analysis, vol. 53, no. 1, pp.105–114, New York, USA: Springer Science + Business Media, January 2017.