# Typical and generalized transitions to deterministic chaos for atypical attractors of non-ideal dynamic systems

## DOI:

https://doi.org/10.20535/SRIT.2308-8893.2022.4.11## Keywords:

non-ideal dynamic system, regular maximal attractor, chaotic maximal attractor, typical and generalized intermittency## Abstract

Some applied nonlinear, non-ideal dynamic systems of the fifth order, which are used to describe the oscillations of spherical pendulums and in hydrodynamics, are considered. Maximal attractors, both regular and chaotic, of such systems are constructed. Various bifurcations of maximal attractors are discussed. The transition to deterministic chaos is established for maximal attractors in typical Feigenbaum and Manneville–Pomeau scenarios. The implementation of the generalized alternation scenario for chaotic maximum attractors of such systems is investigated. A sign of the implementation of the scenario of generalized alternation has been revealed.

## References

E.N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., 20, pp. 130–141, 1963. Available: https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2

Handbook of Applications of Chaos Theory; Edited By C.H. Skiadas and Char. Skiadas. Chapman and Hall/CRC, 2016, 952 p.

G. Leonov and N. Kuznetsov, Nonlinear mathematical models of phase-locked loops. Stability and Oscillations. Cambridge Scientific Publisher, Cambridge, 2014.

N. Kuznetsov, “Hidden attractors in fundamental problems and engineering models,” Lect. Notes Electr. Eng., 4, pp. 13–25, 2016.

J. Milnor, “On the concept of attractor,” Commun. Math. Phys., 99, pp. 177–195, 1985. Available: https://doi.org/10.1007/BF01212280

V.S. Anishchenko and T.E. Vadivasova, Lectures on Nonlinear Dynamics. Research Center Regular and Chaotic Dynamics, 2011, 516 p.

A. Sommerfeld, “Beitrage zum dynamischen Ausbau der Festigkeitslehre,” Physikalische Zeitschrift, 3, pp. 266–271, 1902.

V.O. Kononenko, Vibrating system with a limited power-supply. London: Iliffe, 1969, 236 p.

T.S. Krasnopolskaya, “Acoustic chaos caused by the Sommerfeld effect,” J. Fluids Struct., 8(6), 803–815, 1994. doi: 10.1016/s0889-9746(94)90300-x

T.S. Krasnopolskaya and G.J.F. van Heijst, “Wave pattern formation in a fluid annulas with a vibrating inner shell,” Journal of Fluid Mechanics, vol. 328, pp. 229–252, 1996. Available: https://doi.org/10.1017/S0022112096008701

M.F. Dimentberg et al., “Dynamics of an Unbalanced Shaft Interacting with a Limited Power Supply,” Nonlinear Dynamics, 13, pp. 171–187, 1997.

M. Dimentberg and C. Bucher, “Combinational parametric resonance under imperfectly periodic excitation,” J. Sound Vibr., 331(19), pp. 4373–4378, 2009. doi: 10.1016/j.jsv.2012.04.025

R.F. Ganiev and T.S. Krasnopolskaya, “The Scientific Heritage of V.O. Kononenko: The Sommerfeld–Kononenko Effect,” Journal of Machinery Manufacture and Reliability, 47(5), pp. 389–398, 2018. Available: https://doi.org/10.3103/S1052618818050047

A.A. Alifov, “About mixed forced, parametric and self-oscillations by limited excitation and delayed elasticity,” PNRPU Mechanics Bulletin, 3, pp. 12–19, 2020.

S. Manikandan and P. Kokil, “Stability analysis of network-controlled generator excitation system with interval time-varying delays,” Automatika, 62(1), pp. 65–75, 2021. doi: 10.1080/00051144.2020.1860390

A. Shvets and S. Donetskyi, “Transition to deterministic chaos in some electroelastic systems,” Springer Proceedings in Complexity, pp. 257–264, 2019. DOI 10.1007/978-3-030-15297-0_23.

E.D. Pechuk et al., “Influence of the Heart Rate on Dynamics of Cardiorespiratory System,” Springer Proceedings in Complexity, pp. 211–216, 2020. doi: 10.1007/978-3-030-39515-5_17

T.S. Krasnopol’skaya and A.Yu. Shvets, “Chaotic oscillations of a spherical pendulum as an example of interaction with energy source,” Int. Appl. Mech., 28(10), pp. 669–674, 1992.

T.S. Krasnopol’skaya and A.Y. Shvets, “Parametric resonance in the system: Liquid in tanks +electric motor,” Int. Appl. Mech., 29(9), pp. 722–730, 1993.

T.S. Krasnopolskaya and A.Yu. Shvets, “Chaotic surface waves in limited power—supply cylindrical tank vibrations,” J. Fluids Struct., 8(1), pp. 1–18, 1994. doi: 10.1006/jfls.1994.1001

S.P. Kuznetsov, Dynamic Chaos. M.: Fizmatlit, 2006, 292 p.

T.S. Krasnopolskaya and A.Yu. Shvets, Regular and chaotic dynamics of systems with limited excitation. M.: Research Center Regular and Chaotic Dynamics, 2008, 280 p.

A.Yu. Shvets and T.S. Krasnopolskaya, “Hyperchaos in piezoceramic systems with limited power supply,” Solid Mechanics and its Applications, 6, pp. 313–322, 2008. doi: 10.1007/978-1-4020-6744-0_27

A.Yu. Shvets, “Deterministic chaos of a spherical pendulum under limited excitation,” Ukr. Math. J., 59, pp. 602–614, 2007. doi: 10.1007/s11253-007-0039-7

A. Shvets and S. Donetskyi, “New Types of Limit Sets in the Dynamic System “Spherical Pendulum—Electric Motor,” Advanced Structured Materials, 157, pp. 443–455, 2021. Available: https://doi.org/10.1007/978-3-030-75890-5_25

A. Li’enard and M.H. Chipart, “Sur le signe de la partie r’eelle des racines d’une quation alg’ebrique,” J. Math. Pures Appl., 10 (4), pp. 291–346, 1914.

M.J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys., 19(1), pp. 25–52, 1978. Available: https://doi.org/10.1007/BF01020332

M.J. Feigenbaum, “The universal metric properties of nonlinear transformations,” J. Stat. Phys., 21(6), pp. 669–706, 1979.

P. Manneville and Y. Pomeau, “Different ways to turbulence in dissipative dynamical systems,” Physica D. Nonlinear Phenom., 1(2), pp. 219–226, 1980.

Y. Pomeau and P. Manneville, “Intermittent transition to turbulence in dissipative dynamical systems,” Comm. Math. Phys., 74(2), pp. 189–197, 1980. Available: https://doi.org/10.1007/BF01197757

A.Yu. Shvets and V.A. Sirenko, “Scenarios of transitions to hyperchaos in nonideal oscillating systems,” J. Math. Sci., 243(2), pp. 338–346, 2019. doi: 10.1007/s10958-019-04543-z

A. Shvets, “Overview of Scenarios of Transition to Chaos in Nonideal Dynamic Systems,” Springer Proceedings in Complexity, pp. 853–864, 2021. Available: https://doi.org/10.1007/978-3-030-70795-8_59