Smoothing algorithms for statistical solar data preprocessing
Abstract
Errors of the moving average and the conditions under which the use of the moving average method in the analysis of solar activity distorts the important features of this process was investigated. It was shown that in the approximation of solar cycle oscillations with the period significantly greater than 13 months on the basis of 13-month moving average there is only a small systematic error. Magnitude of these oscillations decrease somewhat, but the whole process is not distorted. However, oscillations with a period in the range from 6 to 12 months are inverted by 13-month moving average, i.e. convex “wave” is replaced with a concave one and vice versa. At the boundary points, when the oscillation period is 6 or 12 months, a 13-month average leads to a complete loss of these oscillations, i.e. reduces their value to zero. This is of fundamental importance for the study of the short-term (months) variability of the solar activity.
References
Hathaway H., Robert R., Wilson R., Reichmann E. A synthesis of solar cycle prediction techniques // Journal of Geophysical Research. — 1999. — 104. — № А10. — Р. 22375–22388.
Petrukovich A.A., Klimov S.I. The use of solar wind measurements for the analysis and prediction of geomagnetic activity // Cosmic Research. — 2000. — 38, № 5. — Р.
Conway A.J. Time series, neural networks and the future of the Sun // New Astronomy Reviews. — 1998. — № 42. — Р. 343–394.
Храмова М.Н., Красоткин С.А., Кононович Э.В. Прогнозирование солнечной активности методом фазовых средних. — http://zhurnal.ape.relarn.ru/arcticles/2001/107/pdf.
Себер Дж. Линейный регрессионный анализ. — М.: Мир, 1980. — 456 с.
Слуцкий Е.Е. Избранные труды. — М.: Изд-во АН СССР, 1960. — 291 с.
Редкозубов С.А. Статистические методы прогнозирования в АСУ. — М.: Энергоиздат, 1981. — 152 с.
Андерсон Т. Статистический анализ временных рядов. — М.: Мир, 1976. — 755 с.
Бокс Дж., Дженкинс Г. Анализ временных рядов, прогноз и управление. Пер. c англ. 1974. — Вып. 1–2. — 604 с.