Generalized scenarios of transition to chaos in ideal dynamic systems

Authors

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2024.3.04

Keywords:

ideal dynamic system, regular and chaotic attractors, generalized intermittency scenario

Abstract

The implementation of a new scenario of transition to chaos in the classical Lorenz system has been discovered. Signs of the presence of an implementation of the generalized intermittency scenario for dynamic systems are described. Phase-parametric characteristics, Lyapunov characteristic exponents, distributions of invariant measures, and Poincaré sections are constructed and analyzed in detail, which confirm the implementation of the generalized intermittency scenario in an ideal Lorenz system.

Author Biographies

Oleksii Horchakov, Institute of Mathematics of NASU, Kyiv

Ph.D. student at the Department of Mathematical Problems of Mechanics and Control Theory of the Institute of Mathematics of NASU, Kyiv, Ukraine.

Aleksandr Shvets, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Doctor of Physical and Mathematical Sciences, a professor at the Department of Mathematical Physics and Differential Equations of the Faculty of Physics and Mathematics of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

References

M.J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys., 19(1), pp. 25–52, 1978. doi: https://doi.org/10.1007/BF01020332

M.J. Feigenbaum, “The universal metric properties of nonlinear transformations,” J. Stat. Phys., 21(6), pp. 669–706, 1979. doi: https://doi.org/10.1007/BF01107909

P. Manneville, Y. Pomeau, “Different ways to turbulence in dissipative dynamical systems,” Physica D. Nonlinear Phenom., 1(2), pp. 219–226, 1980. doi: https://doi.org/10.1016/0167-2789(80)90013-5

Y. Pomeau, P. Manneville, “Intermittent transition to turbulence in dissipative dynamical systems,” Comm. Math. Phys., 74(2), pp. 189–197, 1980. doi: https://doi.org/10.1007/BF01197757

S.P. Kuznetsov, Dynamic Chaos. M.: Fizmatlit, 292 p., 2006.

A. Shvets, “Overview of Scenarios of Transition to Chaos in Nonideal Dynamic Systems,” Springer Proceedings in Complexity. Springer, Cham, pp. 853–864, 2021. doi: https://doi.org/10.1007/978-3-030-70795-8_59

T.S. Krasnopolskaya, A.Yu. Shvets, “Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks,” J. Sound Vibr., 322(3), pp. 532–553, 2009. doi: https://doi.org/10.1016/j.jsv.2008.09.007

A.Yu. Shvets, V.A. Sirenko, “Scenarios of transitions to hyperchaos in nonideal oscillating systems,” J. Math. Sci., 243(2), pp. 338–346, 2019. doi: https://doi.org/10.1007/s10958-019-04543-z

A. Shvets, S. Donetskyi, “Transition to deterministic chaos in some electroelastic systems,” Springer Proceedings in Complexity, pp. 257–264, 2019. doi: https://doi.org/10.1007/978-3-030-15297-0_23

A. Shvets, S. Donetskyi, “New Types of Limit Sets in the Dynamic System “Spherical Pendulum—Electric Motor,”” Advanced Structured Materials, 157, pp. 443–455, 2021. doi: https://doi.org/10.1007/978-3-030-75890-5_25

A.Y. Shvets, “Typical and Generalized Transitions to Deterministic Chaos for Atypycal Attractors of Non-Ideal Dynamic Systems,” System Research and Information Technologies, no. 4, pp. 141–150, 2022. doi: https://doi.org/10.20535/SRIT.2308-8893.2022.4.11

A.Yu. Shvets, “Nonisolated Limit Sets for Some Hydrodynamics Systems with Limited Excitation,” J. Math. Sci., 274(6), pp. 912–922, 2023. doi: https://doi.org/10.1007/s10958-023-06650-4

V.O. Kononenko, Vibrating system with a limited power-supply. London: Iliffe, 1969, 236 p.

K.V. Frolov, T.S. Krasnopolskaya, “Sommerfeld effect in systems without internal damping,” Soviet Applied Mechanics, 23(12), pp. 1122–1126, 1987. doi: https://doi.org/10.1007/BF00884888

T.S. Krasnopol’skaya, A.Y. Shvets, “Parametric resonance in the system: Liquid in tanks + electric motor,” Int. Appl. Mech., 29(9), pp. 722–730, 1993. doi: https://doi.org/10.1007/BF00847371

T.S. Krasnopolskaya, G.J.F. van Heijst, “Wave pattern formation in a fluid annulas with a vibrating inner shell,” Journal of Fluid Mechanics, vol. 328, pp. 229–252, 1996. doi: https://doi.org/10.1017/S0022112096008701

N.N. Verichev, “Chaotic torsional vibration of imbalanced shaft driven by a limited power supply,” J. Sound Vibr., 331(2), pp. 384–393, 2012. doi: https://doi.org/10.1016/j.jsv.2011.08.022

M. Dimentberg, C. Bucher, “Combinational parametric resonance under imperfectly periodic excitation,”J. Sound Vibr., 331(19), pp. 4373–4378, 2012. doi: https://doi.org/10.1016/j.jsv.2012.04.025

E.N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., 20, pp. 130–141, 1963. doi: https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2

E.N. Lorenz, “The mechanics of vacillation,” J. Atmos. Sci., 20, pp. 448–464, 1963. doi: https://doi.org/10.1175/1520-0469(1963)020%3C0448%3ATMOV%3E2.0.CO%3B2

Handbook of Applications of Chaos Theory; Edited by Christos H. Skiadas, Charilaos Skiadas. Chapman and Hall/CRC, 2016, 952 p.

V.S. Anishchenko, T.E. Vadivasova, Lectures on Nonlinear Dynamics. Research Center Regular and Chaotic Dynamics, 2011, 516 p.

A.Yu. Shvets, T.S. Krasnopolskaya, “Hyperchaos in piezoceramic systems with limited power supply,” Solid Mechanics and its Applications, 6, pp. 313–322, 2008. doi: https://doi.org/10.1007/978-1-4020-6744-0_27

Downloads

Published

2024-09-28

Issue

Section

Methods of optimization, optimum control and theory of games