Uncertainty and absence of arbitrage opportunity
Abstract
A new classification of the decision-making situations is proposed. It is based on the notion of uncertainty in matrix scheme of the situation. Such an approach to the classification of the decision-making situations differs from known approach, according to which the situations with risk and uncertainty are distinguished depending on the presence of probability distribution on the values of an unknown parameter. The necessary and sufficient conditions for existence of uncertainty in matrix scheme are established. The proposed notion of uncertainty is applied to the analysis of the financial markets. It is shown that the absence of an arbitrage opportunity on the financial market in the Arrow–Debreu model with a riskless asset is a particular case of the existence of uncertainty in the decision-making situation. This result gives an opportunity to view the no–arbitrage pricing theory for financial instruments as a branch of the general decision theory.
References
Иваненко В.И., Лабковский В.А. Проблема неопределенности в задачах принятия решений. — К.: Наукова думка, 1990. — 136 с.
Иваненко В.И., Михалевич В.М. К вопросу о неопределенности в задачах принятия решения // Кибернетика и системный анализ. — 2008. — № 2. — С. 116–120.
Knight F.H. Risk, uncertainty and profit. — Boston: Houghton Mifflin, 1921. — 381 p.
Savage L.J. The foundations of statistics. — NY: Wiley & Sons, 1954. — 294 p.
Bell D.E., Raiffa H., Tversky A. (eds.) Decision making: descriptive, normative, and prescriptive interactions. — NY: Cambridge University Press, 1988. — 623 p.
Ellsberg D. Risk, ambiguity and the Savage axioms // Quarterly Journal of Economics. — 1961. — № 75. — P. 643–669.
Bouyssou D., Dubois D., Prade H., Pirlot M. (eds.) Decision-Making Process: Concepts and methods. — NY: John Wiley & Sons, 2010. — 928 p.
Allais M. Le comportement de l’homme rationel devant le risque // Econometrica. — 1953. — № 21 (4). — P. 503–546.
Ivanenko V.I. Decision systems and nonstochastic randomness. — NY: Springer, 2010. — 272 p.
Avellaneda M., Laurence P. Quantitative modeling of derivative securities: from theory to practice. — NY: Chapman and Hall /CRC, 2000. — 322 p.
Duffie D. Dynamic asset pricing theory, 3rd ed. — Princeton, NJ: Princeton Univ. Press, 2010. — 472 p.
Varian H.R. The arbitrage principle in financial economics // The Journal of Economic Perspectives. — 1987. — 1, № 2. — P. 55–72.
DeGroot M.H. Uncertainty, information, and sequential experiments // Annals of Mathematical Statistics. — 1962. — 33, № 2. — P. 404–419.
Marschak J. Towards an economic theory of organization and information. — 1954. — http://cowles.econ.yale.edu/P/cp/p00b/p0095.pdf.
Михалевич В.М., Иваненко В.И. К неопределенности в непараметрических схемах ситуаций задач принятия решения // Системні дослідження та інформаційні технології. — 2012. — № 1. — С. 61–76.
Иваненко В.И., Михалевич В.М. К неопределенности в параметрических схемах ситуаций задач принятия решения // Системні дослідження та інформаційні технології. — 2012. — № 3. — С. 30–42.
Фишберн П. Теория полезности для принятия решений. — М.: Наука, 1978. — 352 с.