Navigating challenges in deep learning for skin cancer detection
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2025.2.03Keywords:
skin cancer, deep learning, classification, transformers, CNN, GAN, data preprocessing, data augmentationAbstract
Skin cancer is one of the most prevalent malignancies worldwide. A critical factor in reducing mortality rates is the early detection. It underscores the need for accessible Computer-Aided Diagnostic (CAD) systems. Recent advancements in Deep Learning (DL) have shown great promise in addressing this challenge. Despite this progress in the field of machine learning, researchers encounter numerous obstacles when it comes to skin cancer classification. This article examines the current state of DL-based skin cancer diagnostics. Critical aspects of system development, including data preprocessing, model training, and performance evaluation, are addressed. Moreover, the article highlights opportunities for innovation that could significantly advance the field. By providing a comprehensive overview, this article aims to guide researchers and practitioners in optimizing DL models, addressing existing limitations, and exploring emerging trends to enhance diagnostic accuracy and accessibility.
References
Cancer Research UK. Available: https://www.cancerresearchuk.org/
Health workforce: The health workforce crisis. Available: https://www.who.int/news-room/questions-and-answers/item/q-a-on-the-health-workforce-crisis
L.G. Wich et al., “Impact of Socioeconomic Status and Sociodemographic Factors on Melanoma Presentation Among Ethnic Minorities,” Journal of Community Health, vol. 36, no. 3, pp. 461–468, Nov. 2010. doi: 10.1007/s10900-010-9328-4.
A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, Jan. 2017. doi: 10.1038/nature21056.
ISIC International Skin Imaging Collaboration. Available: https://www.isic-archive.com/
“Can artificial intelligence detect melanoma?” Memorial Sloan Kettering Cancer Center, Jul. 24, 2024. Available: https://www.mskcc.org/news/can-artificial-intelligence-detect-melanoma
Y. Liu et al., “A deep learning system for differential diagnosis of skin diseases,” Nature Medicine, vol. 26, no. 6, pp. 900–908, May 2020. doi: 10.1038/s41591-020-0842-3.
A. Yilmaz, M. Kalebasi, Y. Samoylenko, M.E. Guvenilir, H. Uvet, “Benchmarking of Lightweight Deep Learning Architectures for Skin Cancer Classification using ISIC 2017 Dataset,” arXiv (Cornell University), Jan. 2021. doi: 10.48550/arxiv.2110.12270.
M. Baygin, T. Tuncer, S. Dogan, “New pyramidal hybrid textural and deep features based automatic skin cancer classification model: Ensemble DarkNet and textural feature extractor,” arXiv (Cornell University), Jan. 2022. doi: 10.48550/arxiv.2203.15090.
K. Agarwal, T. Singh, “Classification of Skin Cancer Images using Convolutional Neural Networks,” arXiv (Cornell University), Jan. 2022. doi: 10.48550/arxiv.2202.00678.
D. Wen et al., “Characteristics of publicly available skin cancer image datasets: a systematic review,” The Lancet Digital Health, vol. 4, no. 1, pp. e64–e74, Nov. 2021. doi: 10.1016/s2589-7500(21)00252-1.
“ISIC 2024 — Skin Cancer Detection with 3D-TBP,” Kaggle. Available: https://www.kaggle.com/competitions/isic-2024-challenge
P. Tschandl, C. Rosendahl, H. Kittler, “The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Scientific Data, vol. 5, no. 1, Aug. 2018. doi: 10.1038/sdata.2018.161.
A.T. Priyeshkumar, G. Shyamala, T. Vasanth, Selvan V. Ponniyin, “Transforming Skin Cancer Diagnosis: A Deep Learning Approach with the Ham10000 Dataset,” Cancer Investigation, vol. 42, no. 10, pp. 801–814, Nov. 2024. doi: 10.1080/07357907.2024.2422602.
T.M. Alam et al., “An efficient Deep Learning-Based skin cancer classifier for an imbalanced dataset,” Diagnostics, vol. 12, no. 9, p. 2115, Aug. 2022. doi: 10.3390/diagnostics12092115.
H.A. Owida et al., “Improved deep learning architecture for skin cancer classification,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 36, no. 1, p. 501, Jul. 2024. doi: 10.11591/ijeecs.v36.i1.pp501-508.
A. Ameri, “A deep learning approach to skin cancer detection in dermoscopy images,” Journal of Biomedical Physics and Engineering, vol. 10, no. 6, Nov. 2020. doi: 10.31661/jbpe.v0i0.2004-1107.
S.S. Chaturvedi, J.V. Tembhurne, T. Diwan, “A multi-class skin Cancer classification using deep convolutional neural networks,” Multimedia Tools and Applications, vol. 79, no. 39–40, pp. 28477–28498, Aug. 2020. doi: 10.1007/s11042-020-09388-2.
ADDI - Automatic computer-based Diagnosis system for Dermoscopy Images. Available: https://www.fc.up.pt/addi/ph2%20database.html
I. Giotis, N. Molders, S. Land, M. Biehl, M.F. Jonkman, N. Petkov, “MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images,” Expert Systems With Applications, vol. 42, no. 19, pp. 6578–6585, May 2015. doi: 10.1016/j.eswa.2015.04.034.
Dermofit Image Library available from The University of Edinburgh. Available: https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library
X. Sun, J. Yang, M. Sun, K. Wang, “A benchmark for automatic visual classification of clinical skin disease images,” in Lecture notes in computer science, 2016, pp. 206–222. doi: 10.1007/978-3-319-46466-4_13.
“Datasets used to train AI to detect skin cancer lack information on darker skin and often incomplete,” Haiku, Nov. 10, 2021. Available: https://www.cancer.ox.ac.uk/news/lack-of-data-available-to-detect-skin-cancer-in-darker-skin
S. Hu, R.M. Soza-Vento, D.F. Parker, R.S. Kirsner, “Comparison of stage at diagnosis of melanoma among Hispanic, Black, and white patients in Miami-Dade County, Florida,” Archives of Dermatology, vol. 142, no. 6, Jun. 2006. doi: 10.1001/archderm.142.6.704.
H.M. Gloster, K. Neal, “Skin cancer in skin of color,” Journal of the American Academy of Dermatology, vol. 55, no. 5, pp. 741–760, Oct. 2006. doi: 10.1016/j.jaad.2005.08.063.
“Health Insurance Portability and Accountability Act (HIPAA)”, U.S. Department of Health and Human Services. Available: https://www.hhs.gov/hipaa/index.html
“General Data Protection Regulation (GDPR) – Legal Text,” General Data Protection Regulation (GDPR), Apr. 22, 2024. Available: https://gdpr-info.eu/
S. Khan, H. Ali, Z. Shah, “Identifying the role of vision transformer for skin cancer — A scoping review,” Frontiers in Artificial Intelligence, vol. 6, Jul. 2023. doi: 10.3389/frai.2023.1202990.
P. Tschandl et al., “Human–computer collaboration for skin cancer recognition,” Nature Medicine, vol. 26, no. 8, pp. 1229–1234, Jun. 2020. doi: 10.1038/s41591-020-0942-0.
T.J. Brinker et al., “Deep neural networks are superior to dermatologists in melanoma image classification,” European Journal of Cancer, vol. 119, pp. 11–17, Aug. 2019. doi: 10.1016/j.ejca.2019.05.023.
S.F.H. Shah, D. Arecco, H. Draper, S. Tiribelli, E. Harriss, R.N. Matin, “Ethical implications of artificial intelligence in skin cancer diagnostics: use-case analyses,” British Journal of Dermatology, Nov. 2024. doi: 10.1093/bjd/ljae434.
E.R. Gordon et al., “Ethical considerations for artificial intelligence in dermatology: a scoping review,” British Journal of Dermatology, vol. 190, no. 6, pp. 789–797, Feb. 2024. doi: 10.1093/bjd/ljae040.
H.A. Haenssle et al., “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists,” Annals of Oncology, vol. 29, no. 8, pp. 1836–1842, May 2018. doi: 10.1093/annonc/mdy166.
A.G.C. Pacheco, R.A. Krohling, “Recent advances in deep learning applied to skin cancer detection,” arXiv (Cornell University), Jan. 2019. doi: 10.48550/arxiv.1912.03280.
P. Popecki, M. Kozakiewicz, M. Ziętek, K. Jurczyszyn, “Fractal Dimension Analysis of Melanocytic nevi and melanomas in Normal and Polarized Light—A Preliminary Report,” Life, vol. 12, no. 7, p. 1008, Jul. 2022. doi: 10.3390/life12071008.
“Melanoma Skin Cancer Dataset of 10000 Images,” Kaggle, Mar. 29, 2022. Available: https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
S. Shen et al., “A Low-Cost High-Performance data augmentation for Deep Learning-Based skin lesion classification,” BME Frontiers, 2022. doi: https://doi.org/10.34133/2022/9765307
G.M.S. Himel, Md.M. Islam, Kh.A. Al-Aff, S.I. Karim, Md.K.U. Sikder, “Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-Based Noninvasive Digital System,” International Journal of Biomedical Imaging, vol. 2024, pp. 1–18, Feb. 2024. doi: 10.1155/2024/3022192.
K. Polat, K.O. Koc, “Detection of Skin Diseases from Dermoscopy Image Using the combination of Convolutional Neural Network and One-versus-All,” Journal of Artificial Intelligence and Systems, vol. 2, no. 1, pp. 80–97, Jan. 2020. doi: 10.33969/ais. 2020.21006.
B. Walker et al., “Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies,” EBioMedicine, vol. 40, pp. 176–183, 2019. doi: https://doi.org/10.1016/j.ebiom.2019.01.028
M.S. Ali, M.S. Miah, J. Haque, M.M. Rahman, M.K. Islam, “An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models,” With Applications, vol. 5, 100036, 2021. doi: https://doi.org/10.1016/j.mlwa.2021.100036
Y. Wu, B. Chen, A. Zeng, D. Pan, R. Wang, S. Zhao, “Skin Cancer Classification With Deep Learning: A Systematic Review,” Frontiers in Oncology, vol. 12, Jul. 2022. doi: 10.3389/fonc.2022.893972.
D. Bisla, A. Choromanska, R.S. Berman, J.A. Stein, D. Polsky, “Towards Automated Melanoma Detection With Deep Learning: Data Purification and Augmentation,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2019. doi: 10.1109/cvprw.2019.00330.
Z. Qin, Z. Liu, P. Zhu, Y. Xue, “A GAN-based image synthesis method for skin lesion classification,” Computer Methods and Programs in Biomedicine, vol. 195, p. 105568, May 2020. doi: 10.1016/j.cmpb.2020.105568.
B. Ahmad, S. Jun, V. Palade, Q. You, L. Mao, M. Zhongjie, “Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN),” Diagnostics, vol. 11, no. 11, p. 2147, Nov. 2021. doi: 10.3390/diagnostics11112147.
I.S.A. Abdelhalim, M.F. Mohamed, Y.B. Mahdy, “Data augmentation for skin lesion using self-attention based progressive generative adversarial network,” Expert Systems With Applications, vol. 165, p. 113922, Sep. 2020. doi: 10.1016/j.eswa.2020.113922.
R. Kaur, H. Gholam Hosseini, R. Sinha, “Synthetic Images Generation Using Conditional Generative Adversarial Network for Skin Cancer Classification,” TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON), vol. 27, pp. 381–386, Dec. 2021. doi: 10.1109/tencon54134.2021.9707291.
J. Pope, M. Hassanuzzaman, M. Sherpa, O. Emara, A. Joshi, N. Adhikari, “Skin Cancer Machine Learning Model Tone Bias,” arXiv (Cornell University), 2024. doi: https://doi.org/10.48550/arxiv.2410.06385
E. Rezk, M. Eltorki, W. El-Dakhakhni, “Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach,” JMIR Dermatology, 5(3), e39143, 2022. doi: https://doi.org/10.2196/39143
B.N. Walker et al., “Skin cancer detection in diverse skin tones by machine learning combining audio and visual convolutional neural networks,” Oncology, 103(5), pp. 113–120, 2024. doi: https://doi.org/10.1159/000541573
J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques; 3rd edition, 2011. Available: https://www.scholartext.com/book/88809627?_locale=fr
T. Majtner, B. Bajić, S. Yildirim, J.Y. Hardeberg, J. Lindblad, N. Sladoje, “Ensemble of Convolutional Neural Networks for Dermoscopic Images Classification,” arXiv (Cornell University), 2018. doi: https://doi.org/10.48550/arxiv.1808.05071
S.M. Pizer et al., “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, 39(3), pp. 355–368, 1987.
K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics gems IV. Academic Press Professional, Inc., 1994, pp. 474–485.
C.M. Bishop, Pattern recognition and machine learning. Springer, 2006.
V.D. Midasala, B. Prabhakar, J.K. Chaitanya, K. Sirnivas, D. Eshwar, P.M. Kumar, “MFEUsLNet: Skin cancer detection and classification using integrated AI with multilevel feature extraction-based unsupervised learning,” Engineering Science and Technology an International Journal, 51(10), 101632, 2024. doi: https://doi.org/10.1016/j.jestch.2024.101632
T.K. Lee et al., “Dullrazor®: A software approach to hair removal from images,” Computers in Biology and Medicine, 27(6), pp. 533–543, 1997.
R. Maurya et al., “Skin cancer detection through attention guided dual autoencoder approach with extreme learning machine,” Scientific Reports, vol. 14, no. 17785, Aug. 2024. doi: 10.1038/s41598-024-68749-1.
A. Kirillov et al., “Segment Anything,” arXiv (Cornell University), Apr. 2023. doi: https://doi.org/10.48550/arxiv.2304.02643
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv.org, Jun. 03, 2021. Available: https://www.arxiv.org/abs/2010.11929v2
S. Targ, D. Almeida, K. Lyman, “Resnet in Resnet: Generalizing Residual Architectures,” arXiv (Cornell University), Jan. 2016. doi: 10.48550/arxiv.1603.08029.
X. Han, Y. Zhong, L. Cao, L. Zhang, “Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification,” Remote Sensing, vol. 9, no. 8, p. 848, Aug. 2017. doi: 10.3390/rs9080848.
Q. Guan et al., “Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study,” Journal of Cancer, vol. 10, no. 20, pp. 4876–4882, Jan. 2019. doi: 10.7150/jca.28769.
P. Carcagnì et al., “Classification of Skin Lesions by Combining Multilevel Learnings in a DenseNet Architecture,” in Lecture notes in computer science, pp. 335–344, 2019. doi: 10.1007/978-3-030-30642-7_30.
D. Sinha, M. El-Sharkawy, “Thin MobileNet: An Enhanced MobileNet Architecture,” IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0280–0285, Oct. 2019. doi: 10.1109/uemcon47517. 2019.8993089.
L.N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE Winter Conference on Applications of Computer Vision, pp. 464–472.
I. Loshchilov, F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” arXiv preprint, 2016. doi: https://doi.org/10.48550/arXiv.1608.03983
D.P. Kingma, J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations (ICLR), 2015.
R. Ali, A. Manikandan, R. Lei, J. Xu, “A novel SpaSA based hyper-parameter optimized FCEDN with adaptive CNN classification for skin cancer detection,” Scientific Reports, vol. 14, no. 1, Apr. 2024. doi: 10.1038/s41598-024-57393-4.
Duyen N.T. Le, Hieu X. Le, Lua T. Ngo, Hoan T. Ngo, “Transfer learning with class-weighted and focal loss function for automatic skin cancer classification,” arXiv (Cornell University), Jan. 2020. doi: https://doi.org/10.48550/arxiv.2009.05977
S. Ghosh, S. Dhar, Raktim Yoddha, S. Kumar, Abhinav Kumar Thakur, Nanda Dulal Jana, “Melanoma Skin Cancer Detection Using Ensemble of Machine Learning Models Considering Deep Feature Embeddings,” Procedia Computer Science, vol. 235, pp. 3007–3015, Jan. 2024. doi: https://doi.org/10.1016/j.procs.2024.04.284
J. Atwood, D. Towsley, “Diffusion-Convolutional Neural Networks,” arXiv.org, Jul. 08, 2016. Available: https://arxiv.org/abs/1511.02136
S. Sabour, N. Frosst, G.E. Hinton, “Dynamic Routing Between Capsules,” arXiv (Cornell University), Jan. 2017. doi: https://doi.org/10.48550/arxiv.1710.09829
“SIIM-ISIC Melanoma Classification,” Kaggle, 2024. Accessed on: Dec. 28, 2024. Available: https://www.kaggle.com/competitions/siim-isic-melanoma-classification/discussion/181830
K. Chaitanya, E. Erdil, N. Karani, E. Konukoglu “Contrastive learning of global and local features for medical image segmentation with limited annotations,” in Advances in Neural Information Processing Systems, 2020.
T. Chen, S. Kornblith, M. Norouzi, G. Hinton, “A simple framework for contrastive learning of visual representations,” in International Conference on Machine Learning, 2020.
S. Azizi et al., “Big self-supervised models advance medical image classification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
H. Haggerty, R. Chandra, “Self-supervised learning for skin cancer diagnosis with limited training data,” arXiv (Cornell University), Jan. 2024. doi: https://doi.org/10.48550/arxiv.2401.00692
P. Refaeilzadeh, L. Tang, H. Liu, “Cross-validation,” in Encyclopedia of Database Systems, pp. 532–538. Springer, 2009.
T.R. Mahesh, V.V. Kumar, D.V. Kumar, O. Geman, M. Margala, M. Guduri, “The stratified K-folds cross-validation and class-balancing methods with high-performance ensemble classifiers for breast cancer classification,” Healthcare Analytics, vol. 4, p. 100247, Sep. 2023. doi: 10.1016/j.health.2023.100247.
T.J. Brinker et al., “Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task,” European Journal of Cancer, vol. 113, pp. 47–54, 2019.
S.S. Han et al., “Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network,” PLOS One, vol. 13, no. 1, p. e0191493, Jan. 2018. doi: https://doi.org/10.1371/journal.pone.0191493
S. Moldovanu, F.A. Damian Michis, K.C. Biswas, A. Culea-Florescu, L. Moraru, “Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques,” Cancers, vol. 13, no. 21, p. 5256, Oct. 2021. doi: https://doi.org/10.3390/cancers13215256
V. Nikitin, V. Danylov, “Integration of Fractal Dimension in Vision Transformer for Skin Cancer Classification,” Electronics and Control Systems, vol. 2, no. 76, pp. 15–20, Jun. 2023. doi: https://doi.org/10.18372/1990-5548.76.17662
R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization,” International Journal of Computer Vision, vol. 128, no. 2, pp. 336–359, Feb. 2020. doi: https://doi.org/10.1007/s11263-019-01228-7
A. Binder, G. Montavon, S. Bach, K.-R. Müller, and W. Samek, “Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers,” arXiv (Cornell University), Apr. 2016. doi: https://doi.org/10.48550/arxiv.1604.00825
S. Lundberg, S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” arXiv.org, Nov. 24, 2017. Available: https://arxiv.org/abs/1705.07874v2