Long-term forecasts for state functions of autonomous inclusions of reaction-diffusion type in Rn

Authors

  • N. V. Gorban

Abstract

The reaction-diffusion equation with multivalued interaction function in an unbounded domain is considered. Conditions on the parameters of the problem do not guarantee the uniqueness of solution for the corresponding Cauchy problem. The problem of the long-term forecasting for the state functions of the investigated problem in sense of the theory of global and trajectory attractors for multivalued semiflows is studied. The problems of existence and properties of weak solutions of autonomous reaction-diffusion inclusion in an unbounded domain are studied. The conditions of existence of global and trajectory attractors in the phase and, therefore, the extended phase space are found, their regularity is set. The obtained results are applied to specific problems that modeling the real processes of different nature. In particular, the models of combustion in a porous medium, model of conduction of electrical impulses in the nerves, climatological models are considered.

References

Babin А.V., Vishik M.I. Аttraktory evolyutsionnykh uravneniy. — M.: Nauka,1989. — 392 s.

Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. — NY: Springer-Verlag, 1988. — 500 р.

Chepyzhov V.V., Vishik M.I. Evolution equations and their trajectory attractors // J. Math. Pur. Appl. — 1997. — doi:10.1016/S0021-7824(97)89978-3.

Zgurovsky M.Z., Kasyanov P.O., Kapustyan O.V., Valero J., Zadoianchuk N.V. Evolution Inclusions and Variation Inequalities for Earth Data Processing III. — Berlin: Springer, 2012. — doi:10.1007/978-3-642-28512-7.

Kasyanov P.O., Toscano L., Zadoianchuk N.V. Regularity of Weak Solutions and Their Attractors for a Parabolic Feedback Control Problem // Set-Valued and Variational Analysis. — 2013. — DOI: 10.1007/s11228-013-0233-8.

Morillas F., Valero J. Attractors for reaction-diffusion equation in RN with continuous nonlinearity // Asymptotic Analysis. — 2005. — 44, Iss. 1–2. — Р. 111–130.

Wang B. Attractors for reaction-diffusion equations in unbounded domains // Physica D.: Nonlinear Phenomena. — 1999. — 128, Iss. 1.— Р. 41–52.

Gorban N.V., Stanzhitsky A.N. On the dynamics of solutions for autonomous reaction-diffusion equation in RN with multivalued nonlinearity // Ukr. Math. Bull. — 2009. — 6, Iss. 2. — Р. 235–251.

Global attractors for multivalued dynamical systems / [Kapustyan O.V., Mel’nik V.S., Valero J., Yasinsky V.V.]. — К.: Naukova dumka, 2008. — 208 p.

Gayevskiy KH., Greger K., Zakharias K. Nelineynyye operatornyye uravneniya i operatornyye differentsial’nyye uravneniya. — M.: Mir, 1978. — 337 s.

Gorban N.V., Kasyanov P.O. On Regularity of All Weak Solutions and Their Attractors for Reaction-Diffusion Inclusion in Unbounded Domain // Continues and Distributed Systems Theory and Applications. — 2014. — P. 205–220.

Kapustyan A.V., Melnik V.S., Valero J. Attractors of multivalued dynamical processes generated by phase-field equations // International Journal Of Bifurcation and Chaos. — 2003. — № 13. — P. 1969–1983.

Chepyzhov V.V., Vishik M.I. Trajectory and global attractors of three-dimensional Navier–Stokes systems // Mathematical Notes. — 2002. — doi: 10.1023/A:1014190629738.

Kapustyan O.V., Zherardo I. Hlobal'nyy atraktor dlya neavtonomnoho khvyl'ovoho rivnyannya bez yedynosti rozv"yazku // Systemni doslidzhennya ta informatsiyni tekhnolohiyi. — 2006. — №2. — S. 107–120.

Valero J. Attractors of Parabolic Equations Without Uniqueness // Journal of Dynamics and Differential Equations. — 2001. —13, №. 4. — P. 711–744.

Journal of the Faculty of Science, University of Tokyo, Section 1A, Mathematics. — 1977. — 24, № 3. — P. 575 – 605.

Archive for Rational Mechanics and Analysis January 2008. — 187, Iss. 1. — P. 91–135.

Arrieta J.M., Rodri’guez-Bernal A., Valero J. Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity // International Journal of Bifurcation and Chaos. — 2006. — DOI:1142/S0218127406016586.

Feireisl E., Norbury J. Some existence and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities // Proceedings of the Royal Society of Edinburgh: Section A Mathematics. — 1991. — 119, Iss. 1–2. — Р. 1–17.

Terman D. A free boundary problem arising from a bistable reaction–diffusion equation // SIAM Journal on Mathematical Analysis. — 1983. — 14. — Р. 1107–1129.

Terman D. A free boundary arising from a model for nerve conduction // Journal of differential equations. — 1985. — 58, Iss. 3. — Р. 345–363.

Budyko M.I. The effects of solar radiation variations on the climate of the Earth // Tellus. — 1969. — 21. — Р. 611–619.

Díaz H., Díaz J. On a stochastic parabolic PDE arising in climatology // Real Academia de Ciencias Exactas. — 2002. — 96. — Р. 123–128.

Díaz J., Hernández J., Tello L. On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology // Journal of Mathematical Analysis and Applications. — 1997. — 216. — Р. 593–613.

Díaz J., Hernández J., Tello L. Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model // Real Academia de Ciencias Exactas. — 2002. — 96, Iss. 3. — Р. 357–366.

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research