On some regularization algorithms for solving integral equations

Authors

  • L. L. Hart
  • M. V. Manoilo

Abstract

The problem of approximate finding stable solutions of ill-posed integral equations with constant integration limits is investigated with the use of the projection-iteration regularizing schemes based on Tikhonov’s and Fridman’s methods. The suggested approach assumes a substitution of the regularized integral equation for some sequence of more simple finite-dimensional problems that approximate this equation on the set of shrinking grids. For each approximate problem, only several approximations to the solution are found with applying some iterative procedure and the last of them is taken for the initial approximation in the iterative process for the next approximate problem with the use of the piecewise linear function. The sequence of constructed approximate solutions' linear interpolants is defined as the sequence of approximations to the initial integral equation’s solution. A comparative analysis of computational algorithms using various regularization strategies is carried out, the practical convergence of these algorithms for solving concrete problems is demonstrated.

References

Glushkov V.M., Ivanov V.V., Janenko V.M. O novom klasse dinamicheskih modelej i ego prilozhenii v biologii // Kibernetika. — 1979. — № 4. — S. 133–141.

Samarskij A.A., Vabischevich P.N. Chislennye metody reshenija obratnyh zadach matematicheskoj fiziki. — M.: Izd-vo LKI, 2009. — 480 s.

Goncharskij A.B., Cherepaschuk A.M., Jagola A.G. Chislennye metody reshenija obratnyh zadach astrofiziki — M.: Nauka, 1978. — 336 s.

Verlan' A.F., Sizikov V.S. Integral'nye uravnenija: metody, algoritmy, programmy. — K.: Naukova dumka, 1986. — 544 s.

Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. — M.: Nauka, 1979. — 288 s.

Lavrent'ev M.M., Romanov V.G., Shishatskij S.P. Nekorrektnye zadachi matematicheskoj fiziki i analiza. — M.: Nauka, 1980. — 288 s.

Balashova S.D. Proektsionno-iteratsionnye metody reshenija uravnenij v normirovannyh prostranstvah: Avtoreferat dis. na soisk. uchen. step. kand. fiz.-mat. nauk. — D.: DGU, 1974. — 20 s.

Ortega Dzh., Rejnboldt V. Iteratsionnye metody reshenija nelinejnyh sistem. — M.: Mir, 1975. — 558 s.

Kantorovich L.V., Akilov G.P. Funktsional'nyj analiz. — SPb.: Nevskij Dialekt, 2004. — 816 s.

Gart L.L., Poljakov N.V. Proektsionno-iteratsionnaja realizatsija metoda N'jutona-Kantorovicha dlja reshenija nelinejnyh integral'nyh uravnenij // Problemy upravlenija i informatiki. — 2012. — № 1. — S. 70–78.

Hart L.L. Proektsijno-iteratsijnyj alhorytm rozv’jazannja nekorektnykh intehral'nykh rivnjan' Vol'tera // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2012. — № 1. — S. 101–112.

Vajnikko G. Metody reshenija linejnyh nekorrektno postavlennyh zadach v gil'bertovyh prostranstvah. — Tartuskij gosudarstvennyj universitet. — 1982. — 112 s.

Gart L.L., Poljakov N.V. Proektsionno-iteratsionnyj printsip reshenija nekorrektnyh integral'nyh uravnenij // Pytannja optymizatsiyi obchyslen': Tezy dop. mizhnar. nauk. konf. — Kyyiv, 2013. — S. 63–64.

Published

2015-03-20

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research