An application of Actor model for the distributed genetic algorithms development
Abstract
The article presents an application of the actor model for the high load systems development and analysis. The main attention is dedicated to the usage of actors for an implementation of the distributed genetic algorithms. Different models of parallel distributed genetic algorithms, such as Master-Slave, coarse-grained, and fine-grained genetic algorithms, were investigated in regards to their strong and weak points. Synchronous and asynchronous variants of the Master-Slave approach were adapted to the actor model. With the power of Akka framework, a distributed system — cluster of actors – has been successfully created. Finally, the deployment into the cluster environment of a real program is described which demonstrates the usage of the proposed adaptation of Master-Slave approach for the task of finding robot’s best behavior strategy inside an artificial environment.References
Hewitt C., Bishop P., Streiger R. A Universal Modular Actor Formalism for Artificial Intelligence // IJCAI’73 Proceedings of the 3rd International Joint Conference on Artificial Intelligence. — Morgan Kaufmann Publishers Inc., San Francisco, 1973. — P. 235–245.
Agha G.A. ACTORS: A Model of Concurrent Computation in Distributed Systems. — MIT Press, Cambridge, Massachusetts, 1986. — 190 p.
Gupta M.K. Akka Essentials. — Birmingham: Packt Publishing, 2012. — 334 p.
Wyatt D. Akka Concurrency. — Walnut Creek, California, Artima Inc., 2013. — 515 p.
Zheng L., Lu Y., Ding M. Architecture-based Performance Evaluation of Genetic Algorithms on Multi/Many-core Systems // Proceedings of IEEE 14th International Conference on Computational Science and Engineering, Dalian, Liaoning, 24–26 Aug. 2011. — P. 321–334.
Glibovets N.N., Medvid’ S.А. Geneticheskiye algoritmy i ikh ispol’zovaniye dlya resheniya zadachi sostavleniya raspisaniya // Kibernetika i sistemnyy analiz. — 2003. — № 1. — C. 95–108.
Hlybovets' M.M., Horokhovs'kyy S.S., Kratkova O.V. Hibrydnyy henetychnyy alhorytm vyrishennya zadachi optymizatsiyi struktury intehral'noyi skhemy // Inzheneriya prohramnoho zabezpechennya / Nats. aviats. un-t — K.: NAU. — 2011. — # 1. — S. 70–76.
Hlybovets' M.M., Hulayeva N.M. Evolyutsiyni alhorytmy: pidruchnyk. — K.: NaU-KMA, 2013. — 828 s.
Haupt R.L., Haupt S.E. Practical genetic algorithms. — Wiley-Interscience, 2004. — 272 p.
Luque G., Alba E. Parallel Genetic Algorithms: Theory and Real World Applications // Studies in Computational Intelligence. — Springer-Verlag, 2011, 367 — 172 p.
Umbarkar A.J., Joshi M.S. Review of Parallel Genetic Algorithm Based on Computing Paradigm and Diversity in Search Space // ICTACT Journal on Soft Computing. — 2013. — 3, № 4. — P. 615–622.
Nowostawski M., Poli R. Parallel Genetic Algorithm Taxonomy // Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, 1999. Proceedings. — P. 88–92.
Bidyuk P.I., Litvinenko V.I., Tokar’ А.А. Parallel’nyye geneticheskiye algoritmy // Systemni doslidzhennya ta informatsiyni tekhnolohiyi. — 2002. — # 4. — S. 7–16.
Karmani R.K., Shali A., Agha G. Actor frameworks for the JVM platform: a comparative analysis // PPPJ ’09: proceedings of the 7th international conference on principles and practice of programming in java, Calgary, Alberta. — ACM, NY, 2009. — P. 11–20.
Gupta M.K. Akka Essentials. — Packt Publishing, Birmingham, 2012. — 334 p.
Wyatt D. Akka Concurrency. — Artima Inc., Walnut Creek, California, 2013. — 515 p.
Mitchell M. Complexity: A Guided Tour . — Oxford University Press, 2009. — 326 p.
Akka. Cluster Specification. Version 2.2.3. — http://doc.akka.io/docs/akka/2.2.3/common/cluster.html.