Evaluation of statistical properties of the output sequence of combination generators with graphics tests

Authors

  • A. O. Lavdanskiy Кафедра інформаційної безпеки і комп’ютерної інженерії Черкаського державного технологічного університету, Україна, Черкаси, Ukraine
  • E. V. Faure Кафедра інформаційної безпеки і комп’ютерної інженерії Черкаського державного технологічного університету, Україна, Черкаси, Ukraine

Abstract

In this paper, we consider a class of combination generators wherein the summation operation in a finite field (sum modulo) is used as the combining function. The statistical properties of sequences of numbers at the output of the combination generator where the primary source generators use permutation tables with relatively prime periods of recurrence is studied. Graphical methods for determining the statistical properties of sequences of numbers are considered. Using graphical tests, the analysis of statistical characteristics of the sequences at the output of the combination generator is performed with different primary tables of permutations (linear congruential method, quantum random number generator) and these characteristics are compared with the characteristics of output sequences of existing generators of random (digitized radio noise) and pseudorandom ("Mersenne twister") numbers. The results demonstrate identical statistical properties of all sequences tested in this paper.

Author Biographies

A. O. Lavdanskiy, Кафедра інформаційної безпеки і комп’ютерної інженерії Черкаського державного технологічного університету, Україна, Черкаси

Лавданський Артем Олександрович,

аспірант кафедри інформаційної безпеки і комп’ютерної інженерії Черкаського державного технологічного університету, Україна, Черкаси

E. V. Faure, Кафедра інформаційної безпеки і комп’ютерної інженерії Черкаського державного технологічного університету, Україна, Черкаси

Фауре Емиль Віталійович

доцент, кандидат технічних наук, доцент кафедри інформаційної безпеки і комп’ютерної інженерії Черкаського державного технологічного університету, Україна, Черкаси

References

Knut D.E. Iskusstvo programmirovaniya. V 4-kh t. Tom 2. Poluchislennyye algoritmy. — M.: Vil’yams, 2007. — 832 s.

Mityankina T.V., SHvydkiy V.V., Faure E.V. Preobrazovaniye diskretnykh sluchaynykh protsessov kombinatsionnym avtomatom // Visnyk ChDTU. — 2004. — # 3. — S. 67–69.

Faure E.V. Nelineynyye preobrazovaniya diskretnykh sluchaynykh protsessov // Radioelektronni i komp"yuterni systemy. — 2006. — # 6(18). — S. 200–205.

Faure E.V., Bereza А.S., YAroslavskaya E.А. Otsenka tochnosti vosproizvedeniya zakona raspredeleniya diskretnoy sluchaynoy velichiny pri eye preobrazovanii // Visnyk Khmel'nyts'koho natsional'noho universytetu. — 2012. — # 5. — S. 176–182.

Elwyn R. Berlekamp. Algebraic Coding Theory. — СA: Aegean Park Press, 1984. — 474 p.

Massey J.L. Shift-register synthesis and BCH decoding // IEEE Trans. Information Theory. — 1969. — IT-15. — Р. 122–127.

Niederreiter H. Sequences with almost perfect linear complexity profile. In D. Chaum and W.L. Price, editors, Advances in Cryptology – EUROCRYPT ’87, volume 304 of Lect. Notes Comput. Sci., pages 37–51, Berlin, 1987. Springer.

QRNG Service. — http://qrng.physik.hu-berlin.de/.

Bereza А.S., Lavdanskiy А.А., SHvydkiy V.V., Faure E.V. Generatsiya kongruentnykh posledovatel’nostey chisel s zadannymi svoystvami // Visnyk Cherkas'koho derzhavnoho tekhnolohichnoho universytetu. — 2012. — # 2. — S. 3–8.

Matsumoto M., Nishimura T. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator // ACM Trans. Model. Comput. Simulat. —1998. — 8. — P. 3–30.

True Random Number Service.— http:// random.org/.

Ivanov M.А., CHugunkov I.V. Teoriya, primeneniye i otsenka kachestva generatorov psevdosluchaynykh posledovatel’nostey. — M.: KUDITS-OBRАZ, 2003. — 240 s.

Published

2015-06-22

Issue

Section

Progressive information technologies, high-efficiency computer systems