The system basis of data mining of geospatial data
Abstract
A survey of geospatial data mining (GSDM) research was conducted. The basic prerequisites for the emergence of this research area and its relation to geoinformatics, systems analysis, and data mining were discovered. A bibliographic study of foreign and Ukrainian publications in the field of GSDM was conducted. During this study, a definition for GSDM was provided. The main tasks, functions and stages of GSDM were identified, range of promising directions of development GSDM and its relationship to support decision-making in the regional administration were determined. The study of exceeding the maximum permissible concentrations of uranium in groundwater in the territory of Ukraine on the basis of geological survey was conducted using GSDM clustering hotspots analysis methods and areas with limited use of groundwater were detected.References
Goodchild M.F. Citizens as sensors: The world of volunteered geography // Journal of Geography. – 2007. – 69(4). – P. 211–221.
Ishchuk O.O., Korzhnev M.M., Koshlyakov O.E. Prostorovyy analiz i modelyuvannya v HIS: Navch. posibnyk /; za red. akad. D. M. Hrodzyns'koho. – K.: Vyd.- polihrafichnyy tsentr "Kyyivs'kyy universytet", 2003. – 200 s.
Zgurovs’kiy M.Z., Boldak А.O., Єfremov K.V. Intellektual’nyy analiz i sistemnoye soglasovaniye nauchnykh dannykh v mezhdistsiplinarnykh issledovanyakh // Kibernetika i sistemnyy analiz. – 2013. – № 4. – S. 62–75.
Zatserkovnyy V.I. Heoinformatsiyni tekhnolohiyi yak zasib intelektualizatsiyi upravlinnya terytorial'nymy ob"yektamy // Visnyk Astronomichnoyi shkoly. – 2014. – 10, # 1–2. – 2014. – S. 97–101.
Petrenko A.I. Grid ta intelektual'na obrobka danykh Data Mining // Systemni doslidzhennya ta informatsiyni tekhnolohiyi. – 2008. – # 4. – S. 97–110.
Sarycheva L.V. Prostranstvenno-vremennoy podkhod v zadachakh klasterizatsii // Shtuchnyy intelekt. – 2006. – # 3. – S. 646–653.
Sytnyk V.F., Krasnyuk M.T. Intelektual'nyy analiz danykh (deytamayninh): navch. posibnyk. – K.: KNEU, 2007. – 376 s.
Chernyak O.I., Zakharchenko P.V. Intelektual'nyy analiz danykh: Pidruchnyk. – K.: Znannya, 2014. – 599 s.
Andrienko G., Andrienko N. Data mining with C4.5 and interactive cartographic visualization // In N. W. G. T. Paton (Ed.), User interfaces to data intensive systems. Los Alamitos, CA: IEEE Computer Society. – 1999. – P. 162–165.
Cleve C., Kelly M., Kearns F.R., Morltz M. Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography // Computers Environment and Urban Systems. – 2008. – 32(4). – P. 317–326.
Guo D., Gahegan M., MacEachren A.M., Zhou B. Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach // Cartography and Geographic Information Science. – P. 113–132.
Guo D. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) // International Journal of Geographical Information Science. – 2005. – 22(7). – P. 801–823.
Han J., Kamber M., Tung A.K.H. Spatial clustering methods in data mining: A survey / In H. J. Miller & J. Han (Eds.). – Geographic data mining and knowledge discovery. London and New York: Taylor and Francis. – 2001. – P. 33–50.
Koperski K. An efficient two-step method for classification of spatial data / K. Koperski, J. Han and N. Stefanovic // In 1998 international symposium on spatial data handling SDH’98, Vancouver, BC, Canada. – 1998. – P. 45–54.
Kulldorff M. A spatial scan statistic // Communications in Statistics. – Theory and Methods. – 1997. – 26(6). – P. 1481–1496.
Mennis J., Liu J. W. Mining association rules in spatio-temporal data: An analysis of urban socioeconomic and land cover change // Transactions in GIS. – 2005. – 9(1). – P. 5–17.
Miller H., Han J. Geographic data mining and knowledge discovery: An overview // Geographic data mining and knowledge discovery. CRC Press, Taylor and Francis Group. – 2009. – P. 1–26.
Openshaw S., Charlton M., Wymer C., Craft A. A mark 1 geographical analysis machine for the automated analysis of point data sets // International Journal of Geographical Information Science. – 1987. – 1(4). – P. 335–358.
Shekhar S., Huang Y. Discovering spatial co-location patterns: A summary of results / In C. Jensen, M. Schneider, B. Seeger, & V. Tsotras (Eds.). // Advances in spatial and temporal databases, proceedings, lecture notes in computer science. Berlin: Springer-Verlag. – 2001. – P. 236–256.
Shiode S., Shiode N. Detection of multi-scale clusters in network space // International Journal of Geographical Information Science. – 2009. – 23. – P. 75–92.
Ord J.K., Getis A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application // Geographical Analysis. – 1995. – № 27(4). – P. 13–22.
Cressie N. Statistics for spatial data. – NY: John Wiley & Sons, 1991. – 900 p.