Connection between Petri nets and Polish notation

Authors

  • Vitaly M. Statkevich Department of applied nonlinear analysis of ESC "Institute for Applied System Analysis" NTUU "Kyiv Polytechnic Institute", Kyiv, Ukraine https://orcid.org/0000-0001-5210-9890

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2016.2.01

Keywords:

Petri net, inhibitor Petri net, coloured Petri net, Petri net language, Polish notation, reverse Polish notation

Abstract

We propose Petri nets that produce languages of Polish notation and reverse Polish notation for propositional formulas and mathematical expressions. Propositional formulas can contain a given number of variables and mathematical expressions. Arithmetic expressions can contain a given number of variables and constants. We also propose inhibitor nets that produce the fixed-point binary numbers in mathematical expressions for above-mentioned languages. The technique of the nets construction allows to use arbitrary functions with a given arity. We also propose a coloured Petri net for calculating values of propositional formulas in reverse Polish notation. The technique of the net construction allows to use arbitrary functions with a given arity using a truth table of a corresponding function.

Author Biography

Vitaly M. Statkevich, Department of applied nonlinear analysis of ESC "Institute for Applied System Analysis" NTUU "Kyiv Polytechnic Institute", Kyiv

Vitaly Mikhailovych Statkevich,

Ph.D., candidate of sciences (phys.-math.), researcher at the department of applied nonlinear analysis of ESC "Institute for Applied System Analysis" NTUU "Kyiv Polytechnic Institute", Kyiv, Ukraine

37 Peremogy Avenue, building 35, Kyiv, 03056, Ukraine

References

Piterson Dzh. Teorija setej Petri i modelirovanie sistem / Dzh. Piterson; per. s angl. — M.: Mir, 1984. — 264 s.

Kotov V.E. Sety Petry / V.E. Kotov. — M.: Nauka. Gl. red. fiziko-mat. lit-ry, 1984. — 160 s.

Aho A. Teorija sintaksicheskogo analiza, perevoda i kompiljatsii. T. 1. Sintaksicheskij analiz / A. Aho, Dzh. Ul'man: per. s angl. — M.: Mir, 1978. — 613 s.

Zajtsev D.A. Ingibitornaja set' Petri, ispolnjajuschaja proizvol'no zadannuju mashinu T'juringa / D.A. Zajtsev // Systemni doslidzhennja ta informatsijn tekhnolohiyi. — 2012. — № 2. — S. 26–41.

Best E. Petri net algebra / E. Best, R. Devillers, M. Koutny. — Berlin: Springer-Verlag, 2001. — 380 p.

Jensen K. Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer-Verlag / K. Jensen, L. Kristensen. — Berlin, 2009. — 384 p.

Spektorskij I.Ja. Primenenie setej Petri dlja analiza KS-grammatik / I.Ja. Spektorskij // Systemni doslidzhennja ta informatsijni tekhnolohiyi. — 2011. — № 4. — S. 129–133.

Jantzen M. Labeled Step Sequences in Petri Nets, Applications and Theory of Petri Nets / M. Jantzen, G., Zetzsche // 29th International Conference, Xi'an, China (June 23–27, 2008). — Proceedings. — P. 270–287

Published

2016-08-11

Issue

Section

Progressive information technologies, high-efficiency computer systems