Functional sequences and Taylor series with a fuzzy complex number as an argument
DOI:
https://doi.org/10.20535/SRIT.2308-8893.2016.2.12Keywords:
fuzzy complex number, functional sequence, convergenceAbstract
This article considers functional sequences ƒn(A) with fuzzy complex number A for an argument. The convergences limn→∞ƒ'n(z)=ƒ(z) and limn→∞ƒ'n(x)=ƒ'(x) are assumed to be uniform inside each circle supp A. Due to analyticity, the conditions of point-wise convergence of derivatives and finiteness of the number of solutions for equation ƒ(z)=w with respect to z for each w inside each circle supp A are satisfied. The paper proposes the sufficient conditions for the convergence ƒn(A) in the sense that the sequence of membership functions μƒn(A)(w) converges point-wise. The convergence limn→∞μƒn(A)(w)=μƒ(A)(w) is proved for all points w∈X, except such w=ƒ(z), that z is a discontinuity point of μA(z), or ƒ'(z)=0. As a particular case of a sequence ƒn(A), the generalization of Taylor series ƒ(z)=∑i=0∞ƒ(i)(z0)/i!(z-z0)i is considered for an analytical function ƒ(z) for the case of fuzzy complex argument z=A. The convergence of the series is considered in the sense of point-wise convergence of the partial sum μSn(A)(w), where Sn(z)=∑i=0∞ƒ(i)(z0)/i!(z-z0)i.
References
Orlovskij S.A. Problemy prinjatija reshenij pri nechetkoj ishodnoj informatsii / S.A. Orlovskyj. — M.: Nauka, 1981. — 208 s.
Averkin A.N. Nechetkie mnozhestva v modeljah upravlenija i iskusstvennogo intellekta / A.N. Averkin, I.3. Batyrshin, A.F. Blishun i dr., pod red. D.A. Pospelova. — M.: Nauka. Gl. red. fiz.-mat. lit., 1986. — 312 s.
Passino Kevin M. Fuzzy Control / Kevin M. Passino, Stephen Yurkovich. — Addison Wesley Longman, Menlo Park, CA, 1998. — 522 p.
Zade L.A. Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij / L.A.Zade. — M.: Mir, 1976. — 176 s.
Mizumoto M. Algebraic Properties of Fuzzy Numbers / M. Mizumoto, K. Tanaka // Proceedings of IEEE International Conference on Cybernetics and Society. — 1976. — P. 559–563.
Delgado M. Fuzzy Numbers, Definitions and Properties / M. Delgado, J.L. Verdegay, M.A. Vila // Mathware & Soft Computing 1. — 1994. — N 1 (1). — P. 31–43.
Dubois D. Fuzzy Real Algebra: Some Results / D. Dubois, H. Prade // Fuzzy Sets and Systems. — 1979. — N 4 (2). — P. 327–348.
Buckley J.J. Fuzzy Complex Numbers / J.J. Buckley // Fuzzy Sets and Systems. — 1989. — N 33. — P. 333–345.
Dong Qiu. Notes on fuzzy complex analysis / Dong Qiu, LanShu, Zhi-WenMo // Fuzzy Sets and Systems. — 2009. — N 160. — P. 1578–1589.
Inaida J. Taylor Series on the Fuzzy Number Space / J. Inaida // Special Issue on Biometrics And Its Applications. — 2010. — N 16 (1). — P. 15–25.
Spektorskij I.Ja. Posledovatel'nosti funktsij i rjady Tejlora s nechetkim argumentom / I.Ja. Spektorskij // Systemni doslidzhennja ta informatsijn tekhnolohiyi. — 2014. — № 2. — S. 125–140.
Natanson I.P. Teorija funktsij veschestvennoj peremennoj / Y.P. Natanson. — 3 yzd. — M.: Nauka, 1974. — 480 s.
Kadets V.M. Kurs funktsional'nogo analiza / V.M. Kadets. — H.: Har'k. nats. un-t im. V.N. Karazina, 2006. — 607 s.
Shabat B.V. Vvedenie v kompleksnyj analiz / B.V.Shabat. — M.: Nauka, 1985. — Ch. 1. — 336 s.
Markushevich A.I. Kratkij kurs teorii analiticheskih funktsij / A.Y. Markushevych. — M.: Nauka, 1978. — 416 s.