Functional sequences and Taylor series with a fuzzy complex number as an argument

Authors

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2016.2.12

Keywords:

fuzzy complex number, functional sequence, convergence

Abstract

This article considers functional sequences ƒn(A) with fuzzy complex number A for an argument. The convergences limn→∞ƒ'n(z)=ƒ(z) and limn→∞ƒ'n(x)=ƒ'(x) are assumed to be uniform inside each circle supp A. Due to analyticity, the conditions of point-wise convergence of derivatives and finiteness of the number of solutions for equation ƒ(z)=w with respect to z for each w inside each circle supp A are satisfied. The paper proposes the sufficient conditions for the convergence ƒn(A) in the sense that the sequence of membership functions μƒn(A)(w) converges point-wise. The convergence limn→∞μƒn(A)(w)=μƒ(A)(w) is proved for all points w∈X, except such w=ƒ(z), that z is a discontinuity point of μA(z), or ƒ'(z)=0. As a particular case of a sequence ƒn(A), the generalization of Taylor series ƒ(z)=∑i=0ƒ(i)(z0)/i!(z-z0)i is considered for an analytical function ƒ(z) for the case of fuzzy complex argument z=A. The convergence of the series is considered in the sense of point-wise convergence of the partial sum μSn(A)(w), where Sn(z)=∑i=0ƒ(i)(z0)/i!(z-z0)i.

Author Biography

Igor Ya. Spectorsky, ESC "Institute for Applied System Analysis" NTUU "KPI", Kyiv

Igor Yakovych Spectorsky,

candidate of physical and mathematical sciences, associate professor of educational scientific complex "Institute for Applied System Analysis" NTUU "KPI", Kyiv, Ukraine

References

Orlovskij S.A. Problemy prinjatija reshenij pri nechetkoj ishodnoj informatsii / S.A. Orlovskyj. — M.: Nauka, 1981. — 208 s.

Averkin A.N. Nechetkie mnozhestva v modeljah upravlenija i iskusstvennogo intellekta / A.N. Averkin, I.3. Batyrshin, A.F. Blishun i dr., pod red. D.A. Pospelova. — M.: Nauka. Gl. red. fiz.-mat. lit., 1986. — 312 s.

Passino Kevin M. Fuzzy Control / Kevin M. Passino, Stephen Yurkovich. — Addison Wesley Longman, Menlo Park, CA, 1998. — 522 p.

Zade L.A. Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij / L.A.Zade. — M.: Mir, 1976. — 176 s.

Mizumoto M. Algebraic Properties of Fuzzy Numbers / M. Mizumoto, K. Tanaka // Proceedings of IEEE International Conference on Cybernetics and Society. — 1976. — P. 559–563.

Delgado M. Fuzzy Numbers, Definitions and Properties / M. Delgado, J.L. Verdegay, M.A. Vila // Mathware & Soft Computing 1. — 1994. — N 1 (1). — P. 31–43.

Dubois D. Fuzzy Real Algebra: Some Results / D. Dubois, H. Prade // Fuzzy Sets and Systems. — 1979. — N 4 (2). — P. 327–348.

Buckley J.J. Fuzzy Complex Numbers / J.J. Buckley // Fuzzy Sets and Systems. — 1989. — N 33. — P. 333–345.

Dong Qiu. Notes on fuzzy complex analysis / Dong Qiu, LanShu, Zhi-WenMo // Fuzzy Sets and Systems. — 2009. — N 160. — P. 1578–1589.

Inaida J. Taylor Series on the Fuzzy Number Space / J. Inaida // Special Issue on Biometrics And Its Applications. — 2010. — N 16 (1). — P. 15–25.

Spektorskij I.Ja. Posledovatel'nosti funktsij i rjady Tejlora s nechetkim argumentom / I.Ja. Spektorskij // Systemni doslidzhennja ta informatsijn tekhnolohiyi. — 2014. — № 2. — S. 125–140.

Natanson I.P. Teorija funktsij veschestvennoj peremennoj / Y.P. Natanson. — 3 yzd. — M.: Nauka, 1974. — 480 s.

Kadets V.M. Kurs funktsional'nogo analiza / V.M. Kadets. — H.: Har'k. nats. un-t im. V.N. Karazina, 2006. — 607 s.

Shabat B.V. Vvedenie v kompleksnyj analiz / B.V.Shabat. — M.: Nauka, 1985. — Ch. 1. — 336 s.

Markushevich A.I. Kratkij kurs teorii analiticheskih funktsij / A.Y. Markushevych. — M.: Nauka, 1978. — 416 s.

Published

2016-06-21

Issue

Section

New methods in system analysis, computer science and theory of decision making