Mathematical modeling of contact interaction of rigid base with surface axially-symmetric groove and electroelastic half-space

Authors

  • Vitaliy Kirilyuk The Department of Mechanics stochastically inhomogeneous mediums, S.P. Timoshenko Institute of mechanics NAS of Ukraine, Kyiv, Ukraine, Ukraine https://orcid.org/0000-0002-8513-0378
  • Olga Levchuk The Department of Mechanics stochastically inhomogeneous mediums, S.P. Timoshenko Institute of mechanics NAS of Ukraine, Kyiv, Ukraine, Ukraine https://orcid.org/0000-0002-6514-6225

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2016.3.10

Keywords:

mathematical model, couple system of equations, electroelastic half-space, rigid base, axially symmetric sloping groove, compression and inner pressure, algorithm of problem solution, effect of connectedness fields

Abstract

The mathematical model of the contact interaction under compression of electroelastic halfspace with the rigid base which contains an axially symmetric sloping groove (under inner pressure) was considered. The model takes into account the connectedness of the electroelastic equation system. The algorithm for solving this problem was developed. By means of solving the coupled equations system of electroelasticity and harmonic functions of a special kind, the explicit solution was found, geometrical parameters of clearance between bodies under known compressure and inner pressure were found. The connectedness effect of force and electric fields was revealed. As a particular case from obtained expressions, the contact parameters for elastic transversally isotropic half-space were found.

Author Biographies

Vitaliy Kirilyuk, The Department of Mechanics stochastically inhomogeneous mediums, S.P. Timoshenko Institute of mechanics NAS of Ukraine, Kyiv, Ukraine

Vitaly Kirilyuk,

Doctor of Physical - Mathematical Sciences (Dr. Sci), Leading Researcher of the Department of Mechanics stochastically inhomogeneous mediums, S.P. Timoshenko Institute of mechanics NAS of Ukraine, Kyiv, Ukraine

Olga Levchuk, The Department of Mechanics stochastically inhomogeneous mediums, S.P. Timoshenko Institute of mechanics NAS of Ukraine, Kyiv, Ukraine

Olga Levchuk,

Candidate of Physical - Mathematical Sciences (Ph.D.), Senior researcher of the Department of Mechanics stochastically inhomogeneous mediums, S.P. Timoshenko Institute of mechanics NAS of Ukraine, Kyiv, Ukraine

References

Chang Ch.-R. Eshelby’s tensor for cubic piezoelectric crystals and its application to cavity problems / Ch.-R. Chang // Eng. Frac. Mech. — 2016. — 155. — P. 119–129.

Kaloerov S.A. Determination of intensity factors for stresses, induction and field strength in multi-connected electro-elastic anisotropic media / S.A. Kaloerov // Int. Appl. Mech. — 2007. — 43, № 6. — P. 77–84.

Xu C.H. Electroelastic singularities and intensity factors for an interface crack in piezoelectric–elastic bimaterials / C.H. Xu, Z.H. Zhou, X.S. Xu, A.Y.T. Leung // Appl. Math. Model. — 2015. — 39. — № 9. — P. 2721–2739.

Podil'chuk Yu.N. Exact analytical solutions of static electroelastic and thermoelectroelastic problems for a transversely isotropic body in curvilinear coordinate systems / Yu.N. Podil'chuk // Int. Appl. Mech. — 2003. — 39, № 2. — P. 132–170.

Kiriljuk V.S. O vlijanii temperaturnogo polja na kontaktnoe vzaimodejstvie nagretogo ploskogo ellipticheskogo shtampa s p'ezokeramicheskim poluprostranstvom / V.S. Kiriljuk // Teoreticheskaja i prikladnaja mehanika. — 2009. — Vyp.46. — S. 29–35.

Kiriljuk V.S. O rasklinivanii p'ezokeramicheskih materialov / V.S. Kiriljuk, O.I. Levchuk // Prikladnaja mehanika. — 2010. — 46, № 5. — S. 46–57.

Monastyrs'kyj B.Ye. Osesymetrychna kontaktna zadacha dlja pivprostoriv z heometrychnym zburennjam poverkhni / B.Ye. Monastyrs'kyj // Fizyko-khimichna mekhanika materialiv. — 1999. — № 6. — S. 22–26.

Kit H.S. Prostorovi kontaktni zadachi dlja pruzhnoho pivprostoru i zhorstkoyi osnovy z poverkhnevymy vyyimkamy / H.S. Kit, R.M. Martynjak // Matematychni metody ta fizyko-mekhanichni polja. — 1999. — 42, № 6. — S. 7–11.

Haj M.V. Dvumernye integral'nye uravnenija n'jutonovskogo potentsiala i ih prilozhenija / M.V. Khaj. — K.: Nauk. dumka, 1993. — 256 s.

Published

2016-09-26

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research