Some deterministic models of fuzzy linear programming problems

Authors

  • Y. A. Zack researcher at the European Centre for Mechatronics, Aachen, Germany, Germany

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2016.1.12

Abstract

We consider deterministic equivalents of various formulations of linear programming prob-lems, in which the coefficients of the objective function, constraints and the boundary values of the variables of the problem and the right-hand side are represented by fuzzy sets. The methods for comparing the fuzzy sets and selecting the best ones are proposed. The problem of finding the vec-tor of variables as a vector of real numbers is reduced to solving the one-criterion or multicriteria problem with the significantly large number of constraints. In solving the problem as a vector of Fuzzy-sets, the equivalent problem was determined – a sequence of linear programming problems. The formulated problems can be solved by the simplex method.

Author Biography

Y. A. Zack, researcher at the European Centre for Mechatronics, Aachen, Germany

Zack Y. A.,

Ph.D., researcher at the European Centre for Mechatronics, Aachen, Germany

References

Jazenin A.V. Nechetkoe matematicheskoe programmirovanie / A.V. Jazenin. — Kalinin: Kalin. gos. un-t, 1986. — 60 s.

Zgurovskij M. Modeli i metody prinjatija reshenij v nechetkih uslovijah / M. Zhurovskyj, Ju. Zajchenko. — K.: Nauk. dumka, 2013. — 275 s.

Kumar A. A new method for solving fully fuzzy linear programming problems / A. Kumar, J. Kaur, P. Singh // Applied Mathematical Modelling. — 2011. — 35. — N 2. — P. 817–823.

Kumar A. Fuzzy optimal solution of fully fuzzy linear programming problems with inequality constraints / A. Kumar, J. Kaur, P. Singh // International Journal of Applied Mathematics and Computer Sciences. — 2010. — 6. — P. 37–41.

Rommelfanger H.J. Entscheiden bei Unsch?rfe. Fuzzy Decision Support-Systeme / H.J. Rommelfanger // Springer, Berlin-Heidelberg. — New York, London, Tokio, 1999. — 304 p.

Herrera F. Thtree models of fuzzy integer linear programming / F. Herrera, J.L. Verdegay // European Journal of Operationel Research. — 1995. — N 83. — P. 581–593.

Allahviranloo F. Solving fully fuzzy linear programming problem by the ranking functhion / F. Allahviranloo, H. Lotfi, M.K. Kiasary, N.A. Kiani, L. Alizadeh // Applied Matematical Sciences. — 2008. — 2. — P. 19–32.

Maleki R. Linear programming with fuzzy variables / R. Maleki, M. Tata, M. Mashinchi // Fuzzy Sets and Systems. — 2000. — 109. — P. 21–33.

Zak Ju.A. Prinjatie reshenij v uslovijah razmytyh i nechetkih dannyh / Ju.A. Zak. — M.: URSS, 2013. — 352 s.

Inguichi M. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem / M. Inguichi, J. Ramik // Fuzzy Sets and System. — 2000. — N 11. — P. 3–28.

Barth P. A Davis-Putnam Based Enumeration Algorithm for Linear Pseudo-Boolean Optimization / P. Barth // Max-Plank-Institut f?r Informatik, Saarbr?cken, 1995. — 12 p.

Zak Ju.A. Kriterii i metody sravnenija nechetkih mnozhestv / Ju.A. Zak // Sistemnye issledovanija i informatsionnye tehnologii. —2013. — № 3. — S. 58–68.

Zak Ju.A. Algoritmy reshenija zadach linejnogo bulevogo programmirovanija v uslovijah razmytyh ishodnyh dannyh / Ju.A. Zak // Programmnaja inzhenerija. — 2014. — № 4. — S. 28–38.

Zak Ju.A. Prikladnye zadachi mnogokriterial'noj optimizatsii / Ju.A. Zak // Ekonomika. — 2014. — 452 c.

Zak Ju.A. Mnogokriterial'nye zadachi matematicheskogo programmirovanija s razmytymi ogranichenijami. Matematicheskie modeli shem kompromissa. Vybor reshenij iz konechnogo mnozhestva al'ternativ / Ju.A. Zak // Kibernetika i sistemnyj analiz. — № 5. — 2010. — S. 80–89.

Bellman R.E. Decision-Making in Fuzzy Environment / R.E. Bellman, L.A. Zadeh // Management Science. — 1970. — 17. — N 4. — P.141–160.

Published

2016-03-18

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research