Some control problems for non-homogeneous birth-death processes

Authors

  • Mykola V. Andreev The Department of applied nonlinear analysis, Institute of Applied System Analysis of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine, Ukraine https://orcid.org/0000-0002-4855-8113
  • Vitaly M. Statkevych The Department of applied nonlinear analysis, Institute of Applied System Analysis of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine, Ukraine https://orcid.org/0000-0001-5210-9890

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2016.3.09

Keywords:

control problem, stabilization problem, non-homogeneous Markov birth-death process, birth intensity, death intensity, moment of extinction

Abstract

We consider non-homogeneous Markov birth-death processes in a case of the constant ratio c of death and birth intensities. We solve three control problems by choosing the parameter c for such processes. We solve the problem of minimizing the probability of moving out of range as t→∞. We use the golden section search to find the existing minima, which depend on a threshold value and an integral birth intensity value. We solve the control problem by choosing the parameter c using the stabilization function. The existence of a minimum is proved and the minimum is found; also, important selected cases are considered. The parameter identification problem for an exponential stabilization function is also solved. We solve the problem of minimizing the mean of an extinction time with a small probability of exceeding the threshold. The convergence conditions for the mean are found, the conditions of the threshold exceeding probability are simplified, the problem is solved under an assumption of a constant birth intensity.

Author Biographies

Mykola V. Andreev, The Department of applied nonlinear analysis, Institute of Applied System Analysis of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

Mykola Andreev,

Doctor in Physics and Mathematics, Senior researcher, Leading researcher at the Department of applied nonlinear analysis, Institute of Applied System Analysis of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

Vitaly M. Statkevych, The Department of applied nonlinear analysis, Institute of Applied System Analysis of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

Vitaly Statkevych,

Ph.D. in Physics and Mathematics, researcher at the Department of applied nonlinear analysis, Institute of Applied System Analysis of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

References

Kendall D.G. On the Generalized "Birth-and-Death" Process / D.G. Kendall // Ann. Math. Statistics. — 1948. — 19, N 1. — P. 1–15.

Bartlett M.S. Vvedenie v teoriju sluchajnyh protsessov / M.S. Bartlett. — M.: IL, 1958. — 384 s.

Harris T. Teorija vetvjaschihsja sluchajnyh protsessov / T. Harris. — M.: Mir, 1966. — 356 s.

Horalek V. Nonhomogeneous birth-death processes with constant ratio of rates / V. Horalek // Aplikace matematiky. — 1966. — 11, N 4. — P. 296–302.

Horalek V. On some types of nonhomogeneous birth-immigration-death processes / V. Horalek // Aplikace matematiky. —1964. — 9, N 6. — P. 421–434.

Andreev N.V. O nekotoryh zadachah upravlenija neodnorodnymi protsessami rozhdenija i gibeli / N.V. Andreev, E.S. Shtatland // Trudy seminara "Teorija optimal'nyh reshenij". — Vyp. 4. — K., 1968. — S. 42–46.

Gihman I.I. Vvedenie v teoriju sluchajnyh protsessov / I.I. Gihman, A.V. Skorohod. —2-e izd. — M.: Nauka, 1977. — 568 s.

Kondratiev Yu. Self-organizing birth-and-death stochastic systems in continuum / Yu. Kondratiev, R. Minlos, E. Zhizhina // Rev. Math. Phys. — 2008. — 20, N 4. — P. 451–492.

Seghajer A. Ob interval'noj modeli dlja protsessa rozhdenija i gibeli s gisterezisom / A. Seghajer, I.I. Tsitovich // Informatsionnye protsessy. — 2012. — T. 12, № 1. — S. 117–126.

Kalinkin A.V. Uravnenija markovskogo protsessa gibeli v matematicheskoj teorii nadezhnosti / A.V. Kalinkin // Inzhenernyj zhurnal: nauka i innovatsii. — Vyp. 12 (24), 2013. — 7 s. URL: http://engjournal.ru/catalog/appmath/ hidden/1150.html

Lefevre C. Optimal Control of a Birth and Death Epidemic Process / C. Lefevre // Operations Research. —1981. — 29, N 5. — P. 971–982.

Serfozo R. Optimal Control of Random Walks, Birth and Death Processes, and Queues / R. Serfozo // Advances in Applied Probability. —1981. — 13, N 1. —P. 61–83.

Kyriakidis E.G. Optimal control of a simple immigration-birth-death process through total catastrophes / E.G. Kyriakidis // European Journal of Operational Research. — 1995. — 81, Issue 2. — P. 346–356.

Getz W.M. Optimal control of a birth-and-death process population model / W.M. Getz // Mathematical Biosciences. — 1975. — 23, Issues 1–2. — P. 87–111.

Chatwin R.E. Optimal control of continuous-time terminal-value birth-and-death processes and airline overbooking / R.E. Chatwin // Naval Research Logistics. — 1996. — 43, Issue 2. — P. 159–168.

Andreev N.V. O zadache upravlenija neodnorodnym protsessom rozhdenija i gibeli / N.V. Andreev, V.M. Statkevich // Sistemnyj analiz i informatsionnye tehnologii: materialy 18-j Mezhdunar. nauchno-tehn. konf. SAIT 2016 (Kiev, 30 maja – 2 ijunja 2016 g.) — K.: UNK "IPSA" NTUU "KPI", 2016. — S. 50.

Kidjarov B.I. Mehanizm i kinetika nanorazmernyh stadij obrazovanija kristallov iz zhidkoj fazy / B.I. Kidjarov // Kondensirovannye sredy i mezhfaznye granitsy. — 2009. — 11, № 4. — S. 314–317.

Published

2016-09-26

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research