Mathematical modeling and analysis of the stressed state in the orthotropic piezoelectric medium with a circle crack

Authors

  • Vitaliy Kirilyuk The Department of mechanics of stochastic nonhomogeneous media of the S. P. Timoshenko Institute of Mechanics of the NASU, Kyiv, Ukraine https://orcid.org/0000-0002-8513-0378
  • Olga Levchuk The Department of mechanics of stochastic nonhomogeneous media of the S. P. Timoshenko Institute of Mechanics of the NASU, Kyiv, Ukraine https://orcid.org/0000-0002-6514-6225
  • Olena Gavrilenko The Faculty of Informatics and Computer Science of National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine https://orcid.org/0000-0003-0413-6274

DOI:

https://doi.org/10.20535/SRIT.2308-8893.2017.3.11

Keywords:

mathematical modeling, coupled equations systems of electroelasticity, orthotropic piezoelectric materials, flat circle crack, uniform loading, stress intensity factors

Abstract

A mathematical model for the analysis of the stress state in an orthotropic electroelastic material with a circular (penny-shaped) crack is developed. The model is based on the consideration of the coupled system of electroelasticity equations. The problem on electric and stress states in orthotropic piezoelectric space with an elliptical crack under the force and electric loading was considered. The solution of the problem was obtained by means of using of the triple Fourier transform and Fourier image of Green's function for an infinite orthotropic piezoelectric medium. The approach was tested in the case of the location crack in the isotropy plane of transversely isotropic piezoelectric material for which there was an exact solution of the problem. The comparison of the calculated results confirmed the high efficiency of the used approach. Numerical experiments were conducted and distributions of stress intensity factors along elliptical crack front in orthotropic piezoelectric materials and elastic orthotropic materials under uniform force loading were investigated.

Author Biographies

Vitaliy Kirilyuk, The Department of mechanics of stochastic nonhomogeneous media of the S. P. Timoshenko Institute of Mechanics of the NASU, Kyiv

Vitaliy Kirilyuk,

senior scientist, Doctor of Phys.-Math. Sc., the lead scientist of the Department of mechanics of stochastic nonhomogeneous media of the S. P. Timoshenko Institute of Mechanics of the NASU, Kyiv, Ukraine.

Olga Levchuk, The Department of mechanics of stochastic nonhomogeneous media of the S. P. Timoshenko Institute of Mechanics of the NASU, Kyiv

Olga Levchuk,

Ph.D., Candidate of Phys.-Math. Sc., a senior scientist of the Department of mechanics of stochastic nonhomogeneous media of the S. P. Timoshenko Institute of Mechanics of the NASU, Kyiv, Ukraine.

Olena Gavrilenko, The Faculty of Informatics and Computer Science of National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Olena Gavrilenko,

Ph.D., Candidate of Phys.-Math. Sc., an associate professor at the Faculty of Informatics and Computer Science of National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.

References

Grinchenko V.T. Elektrouprugost' / V.T. Grinchenko, A.F. Ulitko, N.A. Shul'ga. — K.: Nauk. dumka, 1989. — 279 s.

Lehnitskij S.G. Teorija upurugosti anizotropnogo tela / S.G. Lehnitskij. — M.: Nauka, 1977. — 415 s.

Parton V.Z. Elektrouprugost' p'ezokeramicheskih i elektroprovodnyh tel / V.Z. Parton, B.A. Kudrjavtsev. — M.: Nauka, 1988. — 472 s.

Shul'ha M.O. Rezonansni elektromekhanichni kolyvannja p’yezoelektrychnykh plastyn / M.O. Shul'ga, V.L. Karlash. — K.: Nauk. dumka. — 2008. — 270 s.

Chen W.Q. 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium / W.Q. Chen, C.W. Lim // Int. J. Fract. — 2005. — 131, N 3. — P. 231–246.

Chen W.Q. Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer / W.Q. Chen, J.B. Cai, G.R. Ye, Y.F. Wang // International Journal of Solids and Structures. — 2004. — 41, N 18–19. — P. 5247–5263.

Chiang C.R. The nature of stress and electric-displacement concentrations around a strongly oblate cavity in a transversely isotropic piezoelectric material / C.R. Chiang, G.J. Weng // Int. J. Fract. 2005. — 134, N 3–4. — P. 319–337.

Dai L. Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids / L. Dai, W. Guo, X.Wang // Int. J. Solids and Struct. — 2006. — 43, N 6. — P. 1818–1831.

Dunn M.L. Electroelastic Field Concentrations In and Around Inhomogeneities In Piezoelectric Solids / M.L. Dunn, M. Taya // J. Appl. Mech. — 1994. — 61, N 4. — P. 474–475.

Kaloerov S.A. Problem of Electromagnetoviscoelasticity for Multiply Connected Plates / S.A. Kaloerov, A.A. Samodurov // International Applied Mechanics. — 2015. — 51, N 6. — P. 623–639.

Kaloerov S.A. Determining the intensity factors for stresses, electric-flux density, and electric-field strength in multiply connected electroelastic anisotropic media / S.A. Kaloerov // Int. Appl. Mech. — 2007. — 43, N 6. — P. 631–637.

Karnaukhov V.G. Forced Resonant Vibrations and Self-Heating of Solids of Revolution Made of a Viscoelastic Piezoelectric Material / V.G. Karnaukhov, V.I. Kozlov, A.V. Zavgorodnii, I.N. Umrykhin // International Applied Mechanics. — 2015. — 51, N 6. — P. 614–622.

Kirilyuk V.S. Elastic state of a transversely isotropic piezoelectric body with an arbitrarily oriented elliptic crack / V.S. Kirilyuk // Int. Appl. Mech. — 2008. —44, N 2. — P. 150–157.

Kirilyuk V.S. On the stress state of a piezoceramic body with a flat crack under symmetric loads / V.S. Kirilyuk // Int. Appl. Mech. — 2005. — 41, N 11. — P. 1263–1271.

Kirilyuk V.S. Stress state of a piezoelectric ceramic body with a plane crack under antisymmetric loads / V.S. Kirilyuk // Int. Appl. Mech. — 2006. — 42, N 2. — P. 152–161.

Kirilyuk V.S. Stress state of an elastic orthotropic medium with elliptical crack under tension and shear / V.S. Kirilyuk // International Applied Mechanics. — 2005. — 41, N 4. — P. 358–366.

Kirilyuk V.S. Thermostressed state of a piezoelectric body with a plane crack under symmetric thermal load / V.S. Kirilyuk // International Applied Mechanics. — 2008. — 44, N 3. — P. 320–330.

Levchenko V.V. Effect of Boundary Conditions on the Natural Frequencies and Vibration Modes of Piezoelectric Plates with Radially Cut Electrodes / V.V. Levchenko // International Applied Mechanics. — 2015. — 51, N 2. — P. 187–195.

Lin S. Electroelastic analysis of a penny-shaped crack in a piezoelectric ceramic under mode I loading / S. Lin, F. Narita, Y. Shindo // Mech. Res. Com. — 2003. — 30, N 4. — P. 371–386.

Podil’chuk Yu.N. Representation of the general solution of statics equations of the electroelasticity of a transversally isotropic piezoceramic body in terms of harmonic functions / Yu.N. Podil’chuk // International Applied Mechanics. — 1998. — 34, N 7. — P. 623–628.

Podil’chuk Yu.N. Electroelastic equilibrium of transversally isotropic, piezoceramic media containing cavities, inclusions, and cracks / Yu.N. Podil’chuk // International Applied Mechanics. — 1998. — 34, N 10. — P. 1023–1034

Shang F. Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part 1: Analitical development / F. Shang, M. Kuna, T. Kitamura // Theor. Appl. Fract. Mech. — 2003. — 40, N 3. — P. 237–246.

Sladek J. Crack analyses in porous piezoelectric brittle materials by the SBFEM / J. Sladek, V. Sladek, S. Krahulec, C. Song // Engineering Fracture Mechanics. — 2016. — 160. — P. 78–94.

Wang Y.J. The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material / Y.J. Wang, C.F. Gao, H.P. Song // Mechanics Research Communications. — 2015. — 65. — P. 17–23.

Wang Z.K. The general solution of three-dimension problems in piezoelectric media / Z.K. Wang, B.L. Zheng // Int. J. Solids Structures. — 1995. — 32, N 1. — P. 105–115.

Willis J.R. The stress field around an elliptical crack in an anisotropic elastic medium / J.R. Willis // Int.J. Eng. Sci. — 1968. — 6, N 5. — P. 253–263.

Zhang T.Y. Fracture behaviors of piezoelectric materials / T.Y. Zhang, C.F. Gao // Theor. Appl. Fract. Mech. — 2004. — 41, N 1–3. — P. 339–379.

Zhao M.H. Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method / M.H. Zhao, Y. Li, Y. Yan, C.Y. Fan // Engineering Analysis with Boundary Elements. — 2016. — 67. — P. 115–125.

Zhao M.H. Extended displacement discontinuity method for analysis of cracks in 2D poezoelectricsemiconductors / M.H. Zhao, Y.B. Pan, C.Y. Fan, G.T. Xu // International Journal of Solids and Structures. — 2016. — 94–95. — P. 50–59.

Zhou Y. Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections / Y. Zhou, W.Q. Chen, C.F. Lu // Composite Structures. — 2010. — 92, N 4. — P. 1009–1018.

Published

2017-09-29

Issue

Section

Mathematical methods, models, problems and technologies for complex systems research